Previous |  Up |  Next

Article

Keywords:
Schwarz iterative solution; cooperative systems; steady states of evolution problems
Summary:
The aim of this contribution is to propose and analyze some computational means to approximate solving mathematical problems appearing in some recent studies devoted to biological and chemical networks.
References:
[1] Benzi M., Frommer A., Nabben, R., Szyld D.: Algebraic theory of multiplicative Schwarz methods. Numer. Math. 89 (2002), 605–639 DOI 10.1007/s002110100275 | MR 1865505 | Zbl 0991.65037
[2] Benzi M., Szyld D. B.: Existence and uniqueness of splittings for stationary iterative methods with applications to alterning methods. Numer. Math. 76 (1997), 309–321 DOI 10.1007/s002110050265 | MR 1452511
[3] Berman A., Plemmons R.: Non-negative Matrices in the Mathematical Sciences. Academic Press, New York 1979 MR 0544666
[4] Bohl E.: A boundary layer phenomenon for linear systems with a rank deficient matrix. Z. Angew. Math. Mech. 7/8 (1991), 223–231 DOI 10.1002/zamm.19910710707 | MR 1121486 | Zbl 0792.65057
[5] Bohl E.: Constructing amplification via chemical circuits. In: Biomedical Modeling Simulation (J. Eisarfeld, D. S. Leonis, and M. Witken, eds.), Elsevier Science Publ. B. V. 1992, pp. 331–334
[6] Bohl E.: Structural amplification in chemical networks. In: Complexity, Chaos and Biological Evolution (E. Mosekilde and L. Mosekilde, eds.), Plenum Press, New York 1991, pp. 119–128
[7] Bohl E., Boos W.: Quantitative analysis of binding protein-mediated ABC transport system. J. Theoret. Biol. 186 (1997), 65–74 DOI 10.1006/jtbi.1996.0342
[8] Bohl E., Lancaster P.: Perturbation of spectral inverses applied to a boundary layer phenomenon arizing in chemical networks. Linear Algebra Appl. 180 (1993), 65–74 DOI 10.1016/0024-3795(93)90524-R | MR 1206409
[9] Bohl E., Marek I.: A model of amplification. J. Comput. Appl. Math. 63 (1995), 27–47 DOI 10.1016/0377-0427(95)00052-6 | MR 1365549 | Zbl 0845.92003
[10] Bohl E., Marek I.: A nonlinear model involving M-operators. An amplification effect measured in the cascade of vision. J. Comput. Appl. Math. 60 (1994), 13–28 DOI 10.1016/0377-0427(94)00081-B | MR 1354645
[11] Bohl E., Marek I.: A stability theorem for a class of linear evolution problems. Integral Equations Operator Theory 34 (1999), 251–269 DOI 10.1007/BF01300579 | MR 1689389
[12] Bohl E., Marek I.: Existence and uniqueness results for nonlinear cooperative systems. Oper. Theory: Adv. Appl. 130 (2001), 153–170 MR 1902006 | Zbl 1023.47052
[13] Hille E., Phillips R. S.: Functional Analysis and Semigroups (Amer. Math. Society Coll. Publ. Vol. XXXI). Third printing of Revised Edition Providence, RI 1968
[14] Krein M. G., Rutman M. A.: Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat. Nauk III (1948), 1, 3–95. (In Russian.) English translation in Amer. Math. Soc. Transl. 26 (1950) MR 0027128 | Zbl 0030.12902
[15] Marek I.: Frobenius theory of positive operators. Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 608–628 DOI 10.1137/0119060 | MR 0415405 | Zbl 0219.47022
[16] Marek I., Szyld D.: Algebraic Schwarz methods for the numerical solution of Markov chains. Linear Algebra Appl. Submitted MR 2066608 | Zbl 1050.65030
[17] Marek I., Žitný K.: Analytic Theory of Matrices for Applied Sciences, Vol 1. (Teubner Texte zur Mathematik Band 60.) Teubner, Leipzig 1983 MR 0731071
[18] Ortega J. M., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York – San – Francisco – London 1970 MR 0273810 | Zbl 0949.65053
[19] Schaefer H. H.: Banach Lattices and Positive Operators. Springer–Verlag, Berlin – Heidelberg – New York 1974 MR 0423039 | Zbl 0296.47023
[20] Stewart W. J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton, NJ 1994 MR 1312831 | Zbl 0821.65099
[21] Taylor A. E., Lay D. C.: Introduction to Functional Analysis. Second edition. Wiley, New York 1980 MR 0564653 | Zbl 0654.46002
[22] Tralau C., Greller G., Pajatsch M., Boos, W., Bohl E.: Mathematical treatment of transport data of bacterial transport system to estimate limitation in diffusion through the outer membrane. J. Theoret. Biol. 207 (2000), 1–14 DOI 10.1006/jtbi.2000.2140
[23] Varga R. S.: Matrix Iterative Analysis. Prentice–Hall, Englewood Cliffs, NJ 1962. Second edition, revised and expanded. Springer–Verlag, Berlin – Heidelberg – New York 2000 MR 1753713
Partner of
EuDML logo