[3] Beer K., Gol’stejn E. G., Sokolov N. A.: Utilization of the Level-method for Primal Decomposition in Linear Programming Problems. Preprint 2000–13, Faculty of Mathematics, University of Technology, Chemnitz 2000
[4] Beer K., Knobloch M.: Utilization of the Level Method for Dual Decomposition in Convex Quadratic Programming. Preprint 2002-4, Faculty of Mathematics, University of Technology, Chemnitz 2002
[5] Belousov E. G.:
Introduction to Convex Analysis and Integer Programming (in Russian). Izdatel’stvo Moskovskogo Universiteta, Moskau 1977
MR 0475840
[6] Ekeland I., Témam R.:
Convex analysis and variational problems. Unabridged, corrected republication of the 1976 English original. Society for Industrial and Applied Mathematics (SIAM), Philadelphia 1999
MR 1727362 |
Zbl 0322.90046
[8] Kiwiel K. C.:
Methods of Descent for Nondifferentiable Optimization. (Lecture Notes in Mathematics 1133), Springer Verlag, Heidelberg 1985
MR 0797754 |
Zbl 0561.90059
[9] Kiwiel K. C.:
Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Programming 69B (1995), 89–105
DOI 10.1007/BF01585554 |
MR 1354433 |
Zbl 0857.90101
[11] Nožička F., Guddat J., Hollatz, H., Bank B.:
Theorie der linearen parametrischen Optimierung. Akademie Verlag, Berlin 1974
Zbl 0284.90053
[13] Richter K.:
Lösungsverfahren für konvexe Optimierungsaufgaben mit Umrandungsstruktur auf der Grundlage gleichzeitiger primal-dualer Dekomposition. Dissertation, TU Chemnitz 2000
MR 1870565 |
Zbl 1130.90300
[14] Shor N. Z.:
Minimization Methods for Non-differentiable Functions. Springer Verlag, Berlin 1985
MR 0775136 |
Zbl 0561.90058
[16] Unger T.: Erweiterungen der Levelmethode zur Lösung konvexer Optimierungsaufgaben. Dissertation, Shaker Verlag, Aachen 2003