Previous |  Up |  Next

Article

Keywords:
aggregation operators; induced aggregation; group decision- making; preference relations; rationality; consistency
Summary:
The aggregation of preference relations in group decision-making (GDM) problems can be carried out based on either the reliability of the preference values to be aggregated, as is the case with ordered weighted averaging operators, or on the reliability of the source of information that provided the preferences, as is the case with weighted mean operators. In this paper, we address the problem of aggregation based on the reliability of the source of information, with a double aim: a) To provide a general framework for induced ordered weighted operators based upon the source of information, and b) to provide a study of their rationality. We study the conditions which need to be verified by an aggregation operator in order to maintain the rationality assumptions on the individual preferences in the aggregation phase of the selection process of alternatives. In particular, we show that any aggregation operator based on the reliability of the source of information does verify these conditions.
References:
[1] Apostol T. M.: Mathematical Analysis. Second edition. Addison-Wesley, Massachusetts, 1974 MR 0344384 | Zbl 0309.26002
[2] Azcél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York – London 1966 MR 0208210
[3] Azcél J., Alsina C.: Procedures for synthesizing ratio judgements. J. Mathematical Psychology 27 (1983), 93–102 DOI 10.1016/0022-2496(83)90028-7 | MR 0721589
[4] Azcél J., Alsina C.: Synthesizing judgements: A functional equations approach. Mathematical Modelling 9 (1987), 311–320 DOI 10.1016/0270-0255(87)90487-8 | MR 0902224
[5] Cutello V., Montero J.: Hierarchies of aggregation operators. Internat. J. Intelligent System 9 (1994), 1025–1045 DOI 10.1002/int.4550091104
[6] Cutello V., Montero J.: Fuzzy rationality measures. Fuzzy Sets and Systems 62 (1994), 39–54 DOI 10.1016/0165-0114(94)90071-X | MR 1259883 | Zbl 0828.90004
[7] Chiclana F., Herrera, F., Herrera-Viedma E.: Integrating multiplicative preference relations in a multipurpose decision making model based on fuzzy preference relations. Fuzzy Sets and Systems 112 (2001), 277–291 MR 1854819 | Zbl 1098.90523
[8] Chiclana F., Herrera, F., Herrera-Viedma E.: The ordered weighted geometric operator: Properties and application in MCDM problems. In: Technologies for Constructing Intelligent Systems 2: Tools, Series Studies in Fuzziness and Soft Computing 90 (B. B. Bouchon-Meunier, J. Gutierrez-Rios, L. Magdalena, R. R. Yager, eds.), Physica-Verlag, Heidelberg 2002, pp. 173–184 Zbl 1015.68182
[9] Chiclana F., Herrera F., Herrera-Viedma, E., Martínez L.: A note on the reciprocity in the aggregation of fuzzy preference relations using OWA operators. Fuzzy Sets and Systems 137 (2003), 71–83 MR 1992699 | Zbl 1056.91016
[10] Chiclana F., Herrera-Viedma E., Herrera, F., Alonso S.: Induced ordered weighted geometric operators and their use in the aggregation of multiplicative preference relations. Internat. J. Intelligent Systems 19 (2004), 233–255 DOI 10.1002/int.10172 | Zbl 1105.68095
[11] Chiclana F., Herrera-Viedma E., Herrera, F., Alonso S.: Some Induced Ordered Weighted Averaging Operators and Their Use for Solving Group Decision Making Problems Based on Fuzzy Preference Relations. Technical Report DECSAI-SCI2S-03-01, Dept. of Computer Science and A.I., University of Granada, 2003 Zbl 1128.90513
[12] Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Application. Academic Press, New York 1980 MR 0589341
[13] Dubois D., Prade H.: A review of fuzzy sets aggregation connectives. Inform. Sci. 36 (1985), 85–121 DOI 10.1016/0020-0255(85)90027-1 | MR 0813766
[14] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht 1994 Zbl 0827.90002
[15] García-Lapresta J. L., Marques R. A.: Constructing reciprocal and stable aggregation operators. In: Proc. Summer School on Aggregation Operators 2003 (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 73–78
[16] Herrera F., Herrera-Viedma, E., Chiclana F.: Multiperson decision making based on multiplicative preference relations. European J. Oper. Res. 129 (2001), 372–385 DOI 10.1016/S0377-2217(99)00197-6 | MR 1806004 | Zbl 0980.90041
[17] Herrera F., Herrera-Viedma, E., Chiclana F.: A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making. Internat. J. Intelligent Systems 18 (2003), 689–707 DOI 10.1002/int.10106 | Zbl 1037.68133
[18] Herrera F., Herrera-Viedma, E., Verdegay J. L.: A rational consensus model in group decision making using linguistic assessments. Fuzzy Sets and Systems 88 (1997), 31–49
[19] Herrera F., Herrera-Viedma, E., Verdegay J. L.: Choice processes for non-homoge- neous group decision making in linguistic setting. Fuzzy Sets and Systems 94 (1998), 287–308 MR 1612282
[20] Herrera-Viedma E., Herrera F., Chiclana, F., Luque M.: Some issues on consistency of fuzzy preference relations. European J. Oper. Res. 154 (2004), 98–109 DOI 10.1016/S0377-2217(02)00725-7 | MR 2025664 | Zbl 1099.91508
[21] Kacprzyk J., Fedrizzi, M., Nurmi H.: Group decision making and consensus under fuzzy preference and fuzzy majority. Fuzzy Sets and Systems 49 (1992), 21–31 MR 1177944
[22] Saaty, Th. L.: The Analytic Hierarchy Process. McGraw-Hill, New York 1980 MR 0773297
[23] Tanino T.: Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems 12 (1984), 117–131 DOI 10.1016/0165-0114(84)90032-0 | MR 0734944 | Zbl 0567.90002
[24] Tanino T.: Fuzzy preference relations in group decision making. In: Non-Conventional Preference Relations in Decision Making (J. Kacprzyk, M. Roubens, eds.), Springer–Verlag, Berlin 1988, pp. 54–71 MR 1133648 | Zbl 0652.90010
[25] Yager R. R.: Fuzzy decision making including unequal objectives. Fuzzy Sets and Systems 1 (1978), 87–95 DOI 10.1016/0165-0114(78)90010-6 | Zbl 0378.90011
[26] Yager R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Systems, Man and Cybernetics 18 (1988), 183–190 DOI 10.1109/21.87068 | MR 0931863
[27] Yager R. R.: Induced aggregation operators. Fuzzy Sets and Systems 137 (2003), 59–69 MR 1992698 | Zbl 1056.68146
[28] Yager R. R., Filev D. P.: Operations for granular computing: mixing words and numbers. Proc. FUZZ-IEEE World Congress on Computational Intelligence, Anchorage 1998, pp. 123–128
[29] Yager R. R., Filev D. P.: Induced ordered weighted averaging operators. IEEE Trans. Systems, Man and Cybernetics 29 (1999), 141–150 DOI 10.1109/3477.752789
[30] Zadeh L. A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9 (1983), 149–184 DOI 10.1016/0898-1221(83)90013-5 | MR 0719073 | Zbl 0517.94028
[31] Zimmermann H.-J.: Fuzzy Set Theory and Its Applications. Kluwer, Dordrecht 1991 MR 1174743 | Zbl 0984.03042
Partner of
EuDML logo