Previous |  Up |  Next

Article

Keywords:
aggregation rules; logical connectives; fuzzy sets
Summary:
It has been lately made very clear that aggregation processes can not be based upon a unique binary operator. Global aggregation operators have been therefore introduced as families of aggregation operators $\lbrace T_n\rbrace _n$, being each one of these $T_n$ the $n$-ary operator actually amalgamating information whenever the number of items to be aggregated is $n$. Of course, some mathematical restrictions can be introduced, in order to assure an appropriate meaning, consistency and key mathematical capabilities. In this paper we shall discuss these standard conditions, pointing out their respective relevance.
References:
[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966 MR 0208210
[2] Amo A., Montero J., Biging, G., Cutello V.: Fuzzy classification systems. European J. Oper. Res. (to appear) MR 2045676 | Zbl 1056.90077
[3] Amo A. Del, Montero, J., Molina E.: Additive recursive rules. In: Preferences and Decisions Under Incomplete Knowledge (J. Fodor et al, eds.), Physica–Verlag, Heidelberg 2000 MR 1787356
[4] Amo A. Del, Montero, J., Molina E.: Representation of consistent recursive rules. European J. Oper. Res. 30 (2001), 29–53 DOI 10.1016/S0377-2217(00)00032-1 | MR 1813733
[5] Amo A. del, Montero, J., Biging G.: Classifying pixels by means of fuzzy relations. Internat. J. Gen. Systems 29 (2000), 605–621 DOI 10.1080/03081070008960964
[6] Amo A., Montero J., Fernández A., López M., Tordesillas, J., Biging G.: Spectral fuzzy classification: an application. IEEE Trans. Systems, Man and Cybernetics 32 (2002), 42–48 DOI 10.1109/TSMCC.2002.1009135
[7] Barlow R. E., Proschan F.: Statistical Theory of Reliability and Life Testing. To Begin With, Silver Spring 1981 Zbl 0379.62080
[8] Cai K. Y.: Introduction to Fuzzy Reliability. Kluwer, Boston 1996 Zbl 0877.68006
[9] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators. Physica–Verlag, Heidelberg 2002 MR 1936383 | Zbl 0983.00020
[10] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators (T. Calvo et al, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 Zbl 1039.03015
[11] Cutello V., Montero J.: Recursive families of OWA operators. In: Proc. FUZZ-IEEE Conference (P. P. Bonisone, ed.), IEEE Press, Piscataway 1994, pp. 1137–1141
[12] Cutello V., Montero J.: Hierarchical aggregation of OWA operators: basic measures and related computational problems. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 3 (1995), 17–26 DOI 10.1142/S0218488595000037 | MR 1321934 | Zbl 1232.90323
[13] Cutello V., Montero J.: Recursive connective rules. Intelligent Systems 14 (1999), 3–20 Zbl 0955.68103
[14] Baets B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631–642 DOI 10.1016/S0377-2217(98)00325-7 | Zbl 0933.03071
[15] Dombi J.: Basic concepts for a theory of evaluation: the aggregative operator. European J. Oper. Res. 10 (1982), 282–293 DOI 10.1016/0377-2217(82)90227-2 | MR 0665480 | Zbl 0488.90003
[16] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht 1994 Zbl 0827.90002
[17] Fung L. W., Fu K. S.: An axiomatic approach to rational decision making in a fuzzy environment. In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes (L. Zadeh et al, eds.), Academic Press, New York 1975, pp. 227–256 MR 0398652 | Zbl 0366.90003
[18] Golumbic M. C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York 1980 MR 0562306 | Zbl 1050.05002
[19] Gómez D., Montero J., Yáñez J., González-Pachón, J., Cutello V.: Crisp dimension theory and valued preference relations. Internat. J. Gen. Systems (to appear) Zbl 1048.91035
[20] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[21] Klement E. P., Mesiar, R., Pap E.: On the relationship of associative compensatory operators to triangular norms and conorms. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 4 (1996), 129–144 DOI 10.1142/S0218488596000081 | MR 1390899 | Zbl 1232.03041
[22] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, London 1988 MR 0930102 | Zbl 0675.94025
[23] Kolesárová A., Komorníková M.: Triangular norm-based iterative compensatory operators. Fuzzy Sets and Systems 104 (1999), 109–120 DOI 10.1016/S0165-0114(98)00263-2 | Zbl 0931.68123
[24] Mak K. T.: Coherent continuous systems and the generalized functional equation of associativity. Mathem. Oper. Res. 12 (1987), 597–625 DOI 10.1287/moor.12.4.597 | MR 0913861 | Zbl 0648.39006
[25] Marichal J. L., Mathonet, P., Tousset E.: Characterization of some aggregation functions stable for positive linear transformations. Fuzzy Sets and Systems 102 (1999), 293–314 MR 1674975 | Zbl 0952.91020
[26] Mas M., Mayor G., Suñer, J., Torrens J.: Generation of multi-dimensional aggregation functions. Mathware and Soft Computing 5 (1998), 233–242 MR 1704066 | Zbl 0955.03060
[27] Mas M., Mayor, G., Torrens J.: T-operators. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 7 (1999), 31–50 DOI 10.1142/S0218488599000039 | MR 1691482 | Zbl 1087.03515
[28] Mayor G., Calvo T.: On extended aggregation functions. In: Proc. IFSA Conference, Volume 1, Academia, Prague 1997, pp. 281–285
[29] Menger K.: Statistical methods. Proc. Nat. Acad. Sci. U.S.A. 8 (1942), 535–537 DOI 10.1073/pnas.28.12.535 | MR 0007576
[30] Mesiar R.: Compensatory operators based on triangular norms and conorms. In: Proc. EUFIT Conference (H.-J. Zimmermann, ed.), Elite Foundation, Aachen 1995, pp. 131–135
[31] Mesiar R., Komorníková M.: Aggregation operators. In: Proc. PRIM Conference, Institute of Mathematics, Novi Sad 1997, pp. 193–211 MR 1492233 | Zbl 0960.03045
[32] Mesiar R., Komorníková M.: Triangular norm-based aggregation of evidence under fuzziness. In: Aggregation and Fussion of Imperfect Information (B. Bouchon–Meunier, ed.), Physica–Verlag, Heidelberg 1998, pp. 11–35 MR 1644803
[33] Montero J.: A note on Fung–Fu’s theorem. Fuzzy Sets and Systems 17 (1985), 259–269 MR 0819363 | Zbl 0606.90008
[34] Montero J.: Aggregation of fuzzy opinions in a fuzzy group. Fuzzy Sets and Systems 25 (1988), 15–20 DOI 10.1016/0165-0114(88)90095-4 | MR 0918005
[35] Montero J., Amo A., Molina, E., Cutello V.: On the relevance of OWA rules. In: Proc. IPMU Conference, Volume 2, Universidad Politécnica de Madrid, Madrid 2000, pp. 992–996
[36] Montero J., Tejada, J., Yáñez J.: Structural properties of continuous systems. European J. Oper. Res. 45 (1990), 231–240 DOI 10.1016/0377-2217(90)90188-H | MR 1061268
[37] Pattanaik P. : Voting and Collective Choice. Cambridge Univ. Press, Cambridge 1970
[38] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North Holland, Amsterdam 1983 MR 0790314 | Zbl 0546.60010
[39] Shirland L. E., Jesse R. R., Thompson R. L., Iacovou C. L.: Determining attribute weights using mathematical programming. Omega 31 (2003), 423–437 DOI 10.1016/S0305-0483(03)00081-1
[40] Trillas E.: Sobre funciones de negación en la teoría de los subconjuntos difusos. Stochastica III-1:47–59, 1983; English version in : Advances of Fuzzy Logic Universidad de Santiago de Compostela (S. Barro et al, eds.), Santiago de Compostela 1998, pp. 31–43
[41] Walther G.: Granulometric smoothing. Ann. Statist. 25 (1999), 2273–2299 MR 1604445
[42] Yager R. R.: On ordered averaging aggregation operators in multicriteria decision making. IEEE Trans. Systems, Man and Cybernetics 18 (1988), 183–190 DOI 10.1109/21.87068 | MR 0931863
[43] Yager R. R., Rybalov A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111–120 DOI 10.1016/0165-0114(95)00133-6 | MR 1389951 | Zbl 0871.04007
[44] Zadeh L. A.: Fuzzy Sets. Inform. and Control 8 (1965), 338–353 DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
[45] Zimmermann H. J., Zysno P.: Latent connectives in human decision making. Fuzzy Sets and Systems 4 (1980), 37–51 Zbl 0435.90009
Partner of
EuDML logo