Previous |  Up |  Next

Article

Keywords:
fuzzy number; fuzzy relation; t-norm; T-equivalence; shape function
Summary:
This paper is devoted to give a new method of generating T-equivalence using shape function and finding the exact calculation formulas of T-equivalence induced by shape function on the real line. Some illustrative examples are given.
References:
[1] Baets B. De, Marková A.: Analytical for the addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203–213 DOI 10.1016/S0165-0114(97)00141-3 | MR 1480046
[2] Baets B. De, Mareš, M., Mesiar R.: T-partition of the real line generated by impotent shapes. Fuzzy Sets and Systems 91 (1997), 177–184 MR 1480044
[3] Baets B. De, Mesiar R.: Pseudo-metrics and T-equivalence. J. Fuzzy Math. 5 (1997), 471–481 MR 1457163
[4] Harrison M. A.: Introduction to Switching and Automata Theory. McGraw–Hill, New York 1965 MR 0186503 | Zbl 0196.51702
[5] Hong D. H., Hwang S. Y.: On the convergence of T-sum of L-R fuzzy numbers. Fuzzy Sets and Systems 63 (1994), 175–180 DOI 10.1016/0165-0114(94)90347-6 | MR 1275891 | Zbl 0844.04004
[6] Hong D. H., Hwang C.: A T-sum bound of L-R fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 239–252 DOI 10.1016/S0165-0114(97)00144-9 | MR 1480049
[7] Hong D. H., Ro P.: The law of large numbers for fuzzy numbers with bounded supports. Fuzzy Sets and Systems 116 (2000), 269–274 MR 1788398
[8] Jacas J., Recasens J.: Fuzzy numbers and equality relations. In: Proc. 2nd IEEE International Conference on Fuzzy Systems, San Francisco 1993, pp. 1298–1301
[9] Ling C.: Representation of associative function. Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
[10] Mareš M., Mesiar R.: Composition of shape generators. Acta Mathematica et Informatica Universitatis Ostravienses 4 (1996), 37–46 MR 1446782 | Zbl 0870.04003
[11] Mareš M., Mesiar R.: Fuzzy quantities and their aggregation, in aggregation operations. In: New Trends and Applications. Physica–Verlag, Heidelberg 2002, pp. 291–352 MR 1936394
[12] Marková–Stupňanová A.: Idempotents of T-addition of fuzzy numbers. Tatra Mt. Math. Publ. 12 (1997), 67–72 MR 1607198 | Zbl 0954.03059
[13] Mesiar R.: A note to T-sum of L-R fuzzy numbers. Fuzzy Sets and Systems 87 (1996), 259–261 DOI 10.1016/0165-0114(95)00178-6 | MR 1388398
[14] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 MR 0790314 | Zbl 0546.60010
Partner of
EuDML logo