Previous |  Up |  Next

Article

Keywords:
$F$-type fuzzy topological space; variational principle
Summary:
The main purpose of this paper is to introduce the concept of $F$-type fuzzy topological spaces. Further variational principle and Caristi’s fixed point theorem have been extended in the $F$-type fuzzy topological spaces.
References:
[1] Caristi J.: Fixed point theorem for mapping satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241–251 DOI 10.1090/S0002-9947-1976-0394329-4 | MR 0394329
[2] Ekeland J.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324–353 DOI 10.1016/0022-247X(74)90025-0 | MR 0346619 | Zbl 0286.49015
[3] Fang J. X.: The variational principle and fixed point theorems in certain topological spaces. J. Math. Anal. Appl. 202 (1996), 398–412 DOI 10.1006/jmaa.1996.0323 | MR 1406237 | Zbl 0859.54042
[4] George A., Veeramani P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 395–399 DOI 10.1016/0165-0114(94)90162-7 | MR 1289545 | Zbl 0843.54014
[5] Grabic M.: Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27 (1988), 385–389 DOI 10.1016/0165-0114(88)90064-4 | MR 0956385
[6] Katsaras A. K., Liu D. B.: Fuzzy vector spaces and fuzzy topological vector spaces. J. Math. Anal. Appl. 58 (1977), 135–145 DOI 10.1016/0022-247X(77)90233-5 | MR 0440481 | Zbl 0358.46011
[7] Kramosil I., Michálek J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326–334 MR 0410633
[8] Menger K.: Statistics metrics. Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535–537 DOI 10.1073/pnas.28.12.535 | MR 0007576
[9] Schweizer B., Sklar A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 314–334 MR 0115153 | Zbl 0096.33203
[10] Srivastava R., Lal S. N., Srivastava A. K.: Fuzzy Hausdorff topological spaces. J. Math. Anal. Appl. 81 (1981), 497–506 DOI 10.1016/0022-247X(81)90078-0 | MR 0622833 | Zbl 0491.54004
[11] Zadeh L. A.: Fuzzy sets. Inform. and Control 89 (1965), 338–353 DOI 10.1016/S0019-9958(65)90241-X | Zbl 0139.24606
Partner of
EuDML logo