Previous |  Up |  Next

Article

Keywords:
entropy; $L$-$R$ fuzzy numbers
Summary:
In the paper the entropy of $L$–$R$ fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of $L$–$R$ fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of $T_M$–sums and $T_M$–products of $L$–$R$ fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other $t$-norm–based sums and products are derived. Several examples are included.
References:
[1] Alsina C., Trillas E.: Sur les mesures du degré de flou. Stochastica 3 (1979), 81–84 MR 0562445 | Zbl 0425.94030
[2] Batle N., Trillas E.: Entropy and fuzzy integral. J. Math. Anal. Appl. 69 (1979), 469–474 DOI 10.1016/0022-247X(79)90158-6 | MR 0538233 | Zbl 0421.28015
[3] Benvenuti P., Vivona, D., Divari M.: Fuzziness measures via Sugeno’s integral. In: Fuzzy Logic and Soft Computing (B. Bouchon–Meunier, R. R. Yager and L. A. Zadeh, eds.). Adv. Fuzzy Systems 4 (1995), 330–336 MR 1391011 | Zbl 0953.28014
[4] Benvenuti P., Vivona, D., Divari M.: Divergence and fuzziness measures. Soft Computing (2000), in press Zbl 0993.28009
[5] Benvenuti P., Vivona, D., Divari M.: Order relations for fuzzy sets and entropy measure. In: New Trends in Fuzzy Systems (D. Mancini, M. Squillante, A. Ventre, eds.), World Scientific 1998, pp. 224–232
[6] Couso I., Gil P.: Measure of fuzziness of type 2 fuzzy sets. In: Proceedings IPMU’96, Granada 1996, pp. 581–584
[7] Baets B. De, Marková–Stupňanová A.: Analytical expression for the additions of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203–213 DOI 10.1016/S0165-0114(97)00141-3 | MR 1480046
[8] Luca A. De, Termini S.: A definition of a non probabilistic entropy in the setting of fuzzy sets theory. Inform. and Control 20 (1972), 301–312 DOI 10.1016/S0019-9958(72)90199-4 | MR 0327383
[9] Dubois D., Prade H.: Additions of interactive fuzzy numbers. IEEE Trans. Automat. Control 26 (1981), 926–936 DOI 10.1109/TAC.1981.1102744 | MR 0635852
[10] Dubois D., Kerre E. E., Mesiar, R., Prade H.: Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 483–582 MR 1890240 | Zbl 0988.26020
[11] Ebanks B. R.: On measures of fuzziness and their representations. J. Math. Anal. Appl. 94 (1983), 24–37 DOI 10.1016/0022-247X(83)90003-3 | MR 0701447 | Zbl 0523.94036
[12] Hong D. H., Hwang, Ch.: Upper bound of $T$–sums of $L$–$R$ fuzzy numbers. In: Proceedings IPMU’96, Granada 1996, pp. 347–353
[13] Kaufmann A.: Introduction to the Theory of Fuzzy Subsets: Volume 1. Academic Press, New York 1975 MR 0485402
[14] Klement E. P., Mesiar R.: Triangular norms. Tatra Mountains Math. Publ. 13 (1997), 169–194 MR 1483147 | Zbl 0915.04002
[15] Klement E. P., Mesiar, R., Pap E.: Quasi and pseudo–inverses of monotone functions, and the constructions of $t$-norms. Fuzzy Sets and Systems 104 (1999), 3–13 MR 1685803
[16] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[17] Knopfmacher J.: On measures of fuzziness. J. Math. Anal. Appl. 49 (1975), 529–534 DOI 10.1016/0022-247X(75)90196-1 | MR 0434619 | Zbl 0308.02061
[18] Kolesárová A.: Triangular norm-based addition of linear fuzzy numbers. Tatra Mountains Math. Publ. 6 (1995), 75–81 MR 1363985 | Zbl 0851.04005
[19] Kolesárová A.: Similarity preserving $t$-norm-based additions of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 215–229 DOI 10.1016/S0165-0114(97)00142-5 | MR 1480047 | Zbl 0920.04009
[20] Kolesárová A.: Triangular norm-based additions preserving linearity of linear fuzzy intervals. Mathware and Soft Computing 5 (1998), 91–98 MR 1632755
[21] Loo S. G.: Measures of fuzziness. Cybernetica 20 (1997), 201–210
[22] Mareš M.: Computation over Fuzzy Quantities. CRC Press, Boca Raton 1994 MR 1327525 | Zbl 0859.94035
[23] Marková–Stupňanová A.: $T$–sums of $L$–$R$ fuzzy numbers. Fuzzy Sets and Systems 85 (1996), 379–384 DOI 10.1016/0165-0114(95)00370-3
[24] Mesiar R.: Computation over $L$–$R$ fuzzy numbers. In: Proceedings CIFT’95, Trento 1995, pp. 165–176
[25] Mesiar R.: $L$–$R$ fuzzy numbers. In: Proceedings IPMU’96, Granada 1996, pp. 337–342 Zbl 0871.04010
[26] Mesiar R.: A note on the $T$–sum of $L$–$R$ fuzzy numbers. Fuzzy Sets and Systems 79 (1996), 259–261 DOI 10.1016/0165-0114(95)00178-6 | MR 1388398
[27] Mesiar R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets and Systems 86 (1997), 73–78 DOI 10.1016/0165-0114(95)00401-7 | MR 1438439 | Zbl 0921.04002
[28] Mesiar R.: Triangular norm-based additions of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 231–237 DOI 10.1016/S0165-0114(97)00143-7 | MR 1480048
[29] Nguyen H. T.: A note on a extension principle for fuzzy sets. J. Math. Anal. Appl. 64 (1978), 369–380 DOI 10.1016/0022-247X(78)90045-8 | MR 0480044
[30] Pal N. R., Bezdek J. C.: Measuring fuzzy uncertainty. IEEE Trans. Fuzzy Syst. 2 (1994), 107–118 DOI 10.1109/91.277960
[31] Pal N. R., Bezdek J. C.: Quantifying different facets of fuzzy uncertainty. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 459–480 MR 1890239 | Zbl 0986.94056
[32] Sander W.: On measures of fuzziness. Fuzzy Sets and Systems 29 (1989), 49–55 DOI 10.1016/0165-0114(89)90135-8 | MR 0976287
[33] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, Amsterdam 1983 MR 0790314 | Zbl 0546.60010
[34] Trillas E., Riera T.: Entropies of finite fuzzy sets. Inform. Sci. 15 (1978), 158–168 DOI 10.1016/0020-0255(78)90005-1 | MR 0538847
[35] Wang W. J., Chiu, Ch. H.: The entropy of fuzzy numbers with arithmetical operations. Fuzzy Sets and Systems 111 (2000), 357–366 MR 1748553
[36] Vivona D.: Mathematical aspects of the theory of measures of fuzziness. Mathware and Soft Computing 3 (1996), 211–224 MR 1414268 | Zbl 0859.04007
[37] Yager R. R.: On measures of fuzziness and negations, Part I: membership in the unit interval. Internat. J. Gen. Systems 5 (1979), 221–229 DOI 10.1080/03081077908547452 | MR 0553492
[38] Zadeh L. A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23 (1968), 421–427 DOI 10.1016/0022-247X(68)90078-4 | MR 0230569 | Zbl 0174.49002
Partner of
EuDML logo