[8] Krasovskiĭ N. N., Subbotin A. I.:
Game Theoretical Control Problems. Springer, Berlin 1988
MR 0918771 |
Zbl 0649.90101
[12] Nikol’skiĭ M. S.: On a minimax control problem. In: Optimal Control and Differential Games (L. S. Pontryagin, ed.), Proc. Steklov Inst. Math. 1990, pp. 209–214
[14] Patrone F.:
Well–posedness for Nash equilibria and related topics. In: Recent Developments in Well–Posed Variational Problems (R. Lucchetti and J. Revalski, eds.), Kluwer, 1995, pp. 211–227
MR 1351746 |
Zbl 0849.90131
[15] Roubíček T.:
Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin 1997
MR 1458067
[16] Roubíček T.:
Noncooperative games with elliptic systems. In: Proc. IFIP WG 7.2 Conf. Control of P.D.E., Chemnitz 1998, accepted
MR 1723990
[17] Sainte–Beuve M.-F.:
Some topological properties of vector measures with bounded variations and its applications. Ann. Mat. Pura Appl. 116 (1978), 317–379
MR 0506985
[18] Schmidt W. H.:
Maximum principles for processes governed by integral equations in Banach spaces as sufficient optimality conditions. Beiträge zur Analysis 17 (1981), 85–93
MR 0663274 |
Zbl 0478.49023
[20] Tijs S. H.:
Nash equilibria for noncooperative $n$-person game in normal form. SIAM Rev. 23 (1981), 225–237
DOI 10.1137/1023038 |
MR 0618639
[21] Warga J.:
Optimal Control of Differential and Functional Equations. Academic Press, New York 1972
MR 0372708 |
Zbl 0253.49001
[22] Young L. C.:
Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212–234
Zbl 0019.21901