Article
Keywords:
Poisson point process; local asymptotic normality; Hellinger integral; likelihood ratio
Summary:
Using the concept of Hellinger integrals, necessary and sufficient conditions are established for the contiguity of two sequences of distributions of Poisson point processes with an arbitrary state space. The distribution of logarithm of the likelihood ratio is shown to be infinitely divisible. The canonical measure is expressed in terms of the intensity measures. Necessary and sufficient conditions for the LAN-property are formulated in terms of the corresponding intensity measures.
References:
[2] Csiszár I.:
Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität Markoffscher Ketten. Publ. Math. Inst. Hungar. Acad. Sci., Ser. A 8 (1963), 85–108
MR 0164374
[3] Jacod J., Shiryaev A. N.:
Limit Theorems for Stochastic Processes. Springer–Verlag, Berlin 1987
MR 0959133 |
Zbl 1018.60002
[4] Karr A. F.:
Point Processes and their Statistical Inference. Marcel Dekker, New York 1986
MR 0851982 |
Zbl 0733.62088
[5] Kutoyants, Yu. A.:
Parameter Estimation for Stochastic Processes. Helderman, Berlin 1984
MR 0777685 |
Zbl 0542.62073
[6] Kutoyants, Yu. A.:
Statistical inference for spatial Poisson processes. Lab. de Stat. et Proc. Univ. du Maine, Le Mans, manuscript of forthcoming monography (1996)
MR 1644620
[7] LeCam L.:
Locally asymptotically normal families of distributions. Univ. Calif. Publ. Statist. 3 (1960), 37–98
MR 0126903
[11] Lorz U.:
Sekundärgröen Poissonscher Punktprozesse – Grenzwertsätze und Abschätzungen der Konvergenzgeschwindigkeit. Rostock. Math. Kolloq. 29 (1986), 99–111
MR 0863258
[12] Lorz U.:
Beiträge zur Statistik unbegrenzt teilbarer Felder mit unabhängigen Zuwächsen. Dissertation, Univ. Rostock 1987
Zbl 0682.62072
[17] Vajda I.:
Theory of Statistical Inference and Information. Kluwer, Dordrecht 1989
Zbl 0711.62002