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KYBERNETIKA — VOLUME 35 (1999), NUMBER 3, PAGES 281 - 308

CONTIGUITY AND LAN-PROPERTY
OF SEQUENCES OF POISSON PROCESSES

FRIEDRICH LIESE AND Upo LORZ

Using the concept of Hellinger integrals, necessary and sufficient conditions are estab-
lished for the contiguity of two sequences of distributions of Poisson point processes with
an arbitrary state space.

The distribution of logarithm of the likelihood ratio is shown to be infinitely divisible.
The canonical measure is expressed in terms of the intensity measures. Necessary and
sufficient conditions for the LAN-property are formulated in terms of the corresponding
intensity measures.

1. INTRODUCTION

The concept of local asymptotic normality (LAN) of families of distributions @y, ,
h € H, C IRy goes back to LeCam [7] and proved to be fruitful in asymptotic statis-

tics. The LAN-condition means that In 33""; admits an approximate linearization

(Zn,h) — 3||h]|* so that the central sequence Z, is asymptotically sufficient and
asymptotic inference may be based on Z,,. In this paper we study distributions
Pa, 9, Y9 € © C IRy of Poisson processes ®,, with intensity measures A, 9. We intro-
duce a local parameter h by setting ptn n = An 9,4+4,n Where A, — 0 is a sequence
of k x k matrices and denote by Qn » the distribution of a Poisson process with
intensity measure g j.

A first step for proving the LAN-condition is to study the problem under which
conditions Py, is absolutely continuous w.r.t. Pa, (Pr, < Pa,). This problem was
solved in Brown [1] and in Liese [8].

The concept of contiguity is a natural generalization of the absolute continuity
to sequences and, in view of first Lemma of LeCam, is automatically fulfilled if the
LAN-condition holds. In this paper we give necessary and sufficient conditions for
the contiguity of sequences of distributions of Poisson processes and ask for further
conditions which imply the LAN-property. For this purpose we use the fact that the
distribution of In j—,’:—:L is infinitely divisible and calculate the canonical measure. The
application of converzgence criteria for infinitely divisible distributions leads to limit

dP . .
theorems for (ln P_:zlj.l - an) b;!. The representation of In %ﬁ—:— in Karr [4] works
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only for finite A;. Therefore in this paper we assume contiguity and approximate

N
Qn,» by an accompanying sequence QnN,,l 5o that In S2m.h

dQn,O
Lo-integral w.r.t. ®, — pn o and it holds ||QnN.(h") —Qnn || "% 0 for every sequence

N(n) — oco.
d

N
A next step is a suitable linearization of In dg"': using the concept of Ly-differen-

has a representation as an

tiability with respect to a sequence p, . The derivative is then a sequence I, and
the local sequence Z, is a stochastic integral of i,, w.r.t. ®, — pin0. Using this
approach in conjunction with the limit theorems for the logarithm of the likelihood
ratios we obtain necessary and sufficient conditions for the LAN-property if the Lj-
differentiability is fulfilled. Conditions for the LAN-property for Poisson processes
were already established in Kutoyants [5] for Poisson processes in the real line and
in Lorz [12] for Poisson processes with arbitrary state space. But the systematic
use of the concept of contiguity, which is necessary for LAN, and the application
of Ly-differentiabillity simplify the situation considerably and lead to necessary and
sufficient conditions for the LAN-property. We will show that an i.i.d. sequence
of Poisson point processes satisfies the LAN-condition if the family of correspond-
ing intensity measures is Lj-differentiable. Examples for models which have the
LAN-property can be found in Kutoyants [5] and [6], where the theory of statistics
of Poisson point processes was systematically developed. The applicability of this
theory and of the LAN-concept is demonstrated in Kutoyants [5] and [6] on many
concrete problems.

2. DISTRIBUTION OF THE LOGARITHM OF THE LIKELIHOOD RATIO
OF POISSON PROCESSES

To prepare for the main result of this chapter, we first use the concept of Hellinger
integral to formulate and prove conditions for the absolute continuity of distributions
of Poisson processes.

Let p1,u2 be o-finite measures on the measurable space (2, ). Let p be any
o-finite dominating measure and denote by p; and p; the respective densities of p;
and po w.r.t. p. Set for0<s<1

Hy(p1,p2) = /pipé""du and

/ (spr + (1 = s)p2 — pipy~°) dp.

If 4y and po are probability measures then

(2-]§ (#1,#2))% (2 (1 - H%(#l,ﬂz)))%
([ vm-vewr au)’

is the well-known Hellinger distance of y; and p2. Let p;j, j=1,...,n, i=1,2be
o-finite measures on (2, ;) and denote by ;3 X -+ X pt1,n and p21 X -+ X pzn

Js(p1, p12)
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the corresponding product measures. Then it is easily scen that
n
H, (lll,l X X fin, H2,1 X -+ X ﬂz,n) = H H, (lll,jyﬂz,j)- (2-1)
j=1
Introduce the families of convex functions f; and g, by
fs(z) = —2°, 0<s<1l,z2>0
gs(z) = sz+(1-s)—2z°, 0<s<1l, z>0.

Using the convention f; (%) 0=g, (%) 0 = 0 we see that

—H,(p1, p2) /fs (%) p2dp and

Js(l‘l,ﬂ2) = /gs (p_l) D2 d/‘ .
p2

Consequently, both —H, and J, are special f-divergences in the sense of Csiszar [2].
As we will show later the behaviour of Hy and J, as s T 1 and s | 0 is closely related
to the question whether P « @ and Q < P, respectively. We set

go(z) = li{gMzz—l—]nz and
] )

or@) = imZ® —oime—z41 (2.2)
sf1 1 — 8§

and use the conventions 3.— (%) 0 = limyjo ;.- (%)t if a > 0 and Zy; (g) 0 = 0. Note
that g;(z) > 0. The function

f(z)=s(1—-s)(zlnz—z+1)—(sz+(1—s)—z*)
has the following properties:

W =rm=0, f@)=s0-9(-=7+1).

Hence
-—‘t;"(xzs:clnx—z+1 if 1<z<o0. (2:3)

Now we list further properties of the family g, used in the sequel. For % <s<l1
put o = 2= and note that z3 = (z*)*1'~* < az® 4+ 1 — 5. Hence 91(z) > 3;95(z)
and similar 2(1 — s) g%(z) < gs(z). Consequently

<s<1,z>0. (2.4)

DN =

2(1 - s)g%(a:) < gs(z) < 239%(“’))
Set h(z) = 4s(1 — 5) g1(z) — gs(z). Then h(1) = h’(1) = 0 and

h"(z) = s(1 - s) (z-g ~ a:"'z) >0
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for 0 < z < 1. Hence h(z) > 0 and

gs(z) < 4s(1 —s) g%(:c),

Li(py, p2) = /3: (p_1) p2dp.
P2

Note that Iy (p1, p2) = Io(pa2, n1). If pi = P;, i = 1,2 are probability measures then

Il(Pl,Pz):/<I;—: In i—:) dP,

is the well-known Kullback-Leibler information. As the convergence in (2.2) is
uniform on ﬁ <z < N for every fixed N and g, > 0 we get

<s<1,0<z<1. (2.5)

Set

lim jnf Z2\#LH2) ’(’“’“2) / (’1) p2 dp.
M {#spps v} \p2
The monotone convergence Theorem and 31 > 0 yield
.. Js(/‘l:ﬂ2) /0 (p1>
1 f————== > — dpu=1 . 2.
1r8nTin 1—s 2 g1 P2 p2apu 1(#1,ﬂ2) ( 6)

The converse inequality is trivially fulfilled if I(p1, ps) = co. If I(p, p2) < ©0 and
J1(p1, p2) < oo then by (2.3),(2.5) and the Lebesgue Theorem

. Js(p1, p2)
lim ————== =] . 2.
lim —— 1(p1, pa) (2.7)
We have for probability measures P;, P,

Js(P1,P2) =1— Hs(P1, P;) < o00.

Consequently,
1—
lim H,(Py, P2)
sT1 1—s
independent whether I;(Py, P2) < oo or I1(P1, P2) = co. Assume I;(P1, P2) < oo
then

= Il(Pl,Pz) (28)

dP
11(P11P2)=/(1n d_Pl‘) dP;

and by Jensen’s inequality

.dﬁ>s dP - dPl -1
/ ap, 2—/ ap, dP;

/exp {*(1 —s)ln g%} dPy > exp {—(1 — S)Il(Pl, P2)}

H:(PI)PZ)
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or

H (P, P2) > exp{—(1—s)1(P1, P2)}. (2.9)
We now summarize the properties of f-divergences which will be systematically used
in the sequel. For proofs we refer to Liese, Vajda [10] and Vajda [17].

Denote by Z the family of all sub-o-algebras A of F and note that Z is a directed
set by the inclusion, i.e. A; < Az iff A; is a sub-c-algebra A2. Denote by u; 4; the
restriction of p; to Aj. Then by the monotonicity of f-divergences (Theorem 1.24
in Liese, Vajda [10])

Hs (p1,4,, 2,4,) > Hy(p1,4,,p2,4,)  and (2.10)
J.v (:ul,AU#2,.A1) S Js (I‘ll,Ag)“z,Ag) . (211)

Every function ¢ : Z — [—00,00] is a Moor-Smith sequence (net). We denote by
limaez ¢(A) its limit, provided the limit exists. Let Zo C Z be any directed subset
of Z and denote by (Zp) the o-algebra generated by all A € Zy. Suppose p; 4 is
o-finite for every A € Zp. Then by Theorem 9.15 in Vajda [17]

}ier?o Ts (1,4, B2,4) = Js (B1,0(Z0)s B2,0(T0)) - (2.12)
If for some Ag € Tg, H, (141,40, H2,4,) < 00 then
Jim H, (11,4, 12,4) = Hs (81,0(20)) B2,0(Z0)) - (2.13)

The statements (2.12) and (2.13) were shown in Vajda [17] only for probability mea-
sures. But the generalizations in (2.12) and (2.13), respectively, are straightforward.
Denote by p; = p1,a + p1,si the Lebesgue decomposition of p; into the part p1 4
being absolutely continuous w.r.t. g and g1, which is singular w.r.t. p2. Note
that p-a.e.

d/‘],a

dp = plI{P2>0}
d;ll,
d[ts plI{P::O})

where I4 denotes the indicator function of the set A. Inequality (2.4) yields
st+(1-s)y—z'y'* < (\/5—\/5)2 (2.14)
for every 0 < z,y < 0o. Suppose J% (p1, p2) < 0o. Then by the Lebesgue Theorem
lim J, (w1, p2) = / Ip,=0}P1 dps (2.15)
= ﬂl,si(Q)~

If both py and p2 are finite then

[Wr-vmtan < [WVR-VEIVE+EG @10

/IPI"PZI dp < o©



286 F. LIESE AND U. LORZ

and
l’i{{lHa(,uly“Z) = m(Q) - lsiTr?Ja(#l,ltz) (2.17)
= /11’4(9).

Moreover, if puj, s are any o-finite measures then the definition of H; yields that
p1 and ps are mutually singular (g L p2) iff

H%(#l,liz) =0
which is equivalent to
Hy(p1,p12) =0  forevery 0 < s < 1. (2.18)

Suppose now that (X, .A) is a measurable space which will serve as the state space of
Poisson processes. Denote by M the set of all measures ¢ on (X, .A) taking values in
{0,1,...,00}. For every B € A we introduce the mapping Zg : M — {0,...,00} by
Zg(p) = ¢(B). Given z C A we denote by M the o-algebra of subsets generated
by the mappings Zp : M — {0,1,...,00}, B € z. Instead of M4 we shortly
write M. By a point process we shall mean a random variable ® defined on some
probability space which takes values in (M, M).

Let A be a o-finite measure on (X,.A). A point process & is called a Poisson
process with intensity measure A if for every z={By,...,B,} with B;N B; =0, i#
J, Bi € A the random variables ®(By), ..., ®(Bn) are independent and for every
B € A with A(B) < oo the random variable ®(B) has a Poisson distribution with
parameter A(B), i.e.

P(‘I’(B) = ]‘7) 7rA(B)(k)

(AB)* ).

k!
The existence of Poisson process with arbitrary state space and o-finite intensity
measure was shown in Mecke [14].
Suppose now Aj, A, are o-finite measures on (X, A). Denote by v a o-finite
dominating measure. Let R C A be the ring of all sets B € A for which

Ai(B) < 00, 1=1,2, v(B) < oo.

Let Z be the collection of all finite selections of disjoint subsets from R. For 21,22 €
Z we write z; < z, if every B € 2; is the union of some sets from z,. Note that
z € Z is not necessarily a decomposition of X, i.e. it may happen that Upez B is
a strict subset of X. We note that (Z, <) is a directed set. Define

5 [MB) g MB)  (MB)) (Aa(B) 1]
Js,z(Al,Az)—BZEz (B) +(1 )u(B) (V(B)) (V(B))

A simple calculation shows that

H, (mx,,ma,) = exp {— (sh1 + (1= s)d2 = A 7°) }.
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Hence by (2.1)
H, (Pay, My, Paomz) = Jsz(A1, Ag).

Set Iop = {Mz, z € Z} and apply (2.12), (2.13) to get
H, (PA”PAQ) = exXp {—J,(AI,AQ)}. (219)

Put A; = %A;L. By (2.18) we see that Pa, L Py, iff for the Hellinger distance

(rynona)’ = (f (VA - Vi)' o) =
Conversely, if Jy (A1, Az) < oo then by (2.15)

liTrng, (Pa,, Pa,) = exp{—A1,5i(X)}. (2.20)

Otherwise, (2.17) implies

hTr?Hs (PA1’PA2) = Pl\l.ﬂ(M) :

Hence Py, < Pa, iff Ay € Az and J (Al,Az) < 0o.
Summarizing the above results we get the following statement which can already
be found for special cases in Brown [1] and Liese [8].

Proposition 1. Let Pa,, Pj, be distributions of Poisson processes. It holds
J% (Al , Az) =00
iff Pa, L Pa,. It holds Py, < Py, iff A; € Ay and J_;_(A],AQ) < 00.

The concept of contiguous sequences plays a key role in the asymptotic deci-
sion theory. It is in some sense a generalization of the concept of absolute con-
tinuity. To be more precise we suppose that {P,},{Q.} are sequences of distri-
butions on (Q,,,]—' ). Then {P,} is called contiguous w.r.t. {Qn} ({Pn} < {Qn}) if
Qn(Ap) =5 0 implies Po(A4n) =30, An € Fn. If {Pa}<{Qn} and {Qn}<{Pn}
then we write {Pn} <>{Qn}. Assume now P,, ,, Pa,, are distributions of Poisson
point processes with state space (X, Ay).

Theorem 1. The following statements are equivalent

{Pa,..} < {Pr,.} (2:21)
llmTlnfllmme (P, ) Pha, ) =1 (2.22)
limsuplimsup J;(A1n,A2n) = 0 (2.23)

sT1 n—oo
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limsup J%(Al,n,AZn) < o0 (2.29)
lim  Ajnsi(X)=0  and
n— 00
2
limsup limsup/ (\/)\,, - 1) dAg, =0.
N—oo n—oo J{A,>N}

where A, is the density of Ajn,e W.T. t. Agp.

Corollary 1. If
limsup I; (A1 n, A2n) < 00

n—o00
then
{Pa,.} < {Prs.}-

Proof. In view of Liese [9] and Jacod, Shiryaev [3] it holds for any sequences of
distributions

{Pn} <{Qn} «= liminfliminf H,(Pn,Qn) =1

which implies the equivalence of (2.21) and (2.22). The equivalence of (2.22) and
(2.23) follows from the representation of Hy (Pa,, Pa,) in (2.19). Hence it remains
to prove the equivalence of (2.23) and (2.24). Note that g,(z) g7 ' (z) is a continuous

function of (s, z) which is uniformly continuous in % <s<1,0<z<N. Hence

_ gs(z)
Cn(s) = oTiaX, o)

1s also continuous. Therefore

gs(z) < Cn(s) g%(:c) (2.25)
and
li{!llcN(S) = CN(I) =0.
Note that
Js(Al,m A2,n) = /g:(An) dAZ.n + SAl,ﬂ,M'(X")'

Applying the inequality (2.25) we get

To(Arm Agp) < / Cn ()93 (An) dAz / 93 (An) dAg nt5A1 m oi(Xn).
{ } {ra>N} ?

Assume the conditions in (2.24) are fulfilled. Taking at first n — oo then 5 71 and
finally N — oo we get (2.23). To prove (2.23) = (2.24) we note by (2.4)

limsup J%(Al’,,, Az5) =00
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iff
limsup J;(A1,n,A2n) = 00

n— 00

for every 1 < s < 1. Therefore (2.23) implies the first condition in (2.24). The second
condition follows from J;(A1n,A2,n) > SAj1 n,si(&Xn) which is a direct consequence
of the definition of J,. It holds lim,1 g5(z) = 0 for every fixed z. But since

. gz 1
hm 3 = —,
z—oo g,(x) 25

we find for every < s < 1 some N(s) 214 o such that
g%(x) < 4g4(z) for N(s) < z < o0.
Put

A(N) = limsup/ (\/):—- 1)2 dAzn
{Aa>N}

n— o0

and notice that A(N) is nonincreasing. Hence

lim A(N) = limsup A(N(s))
N—o0 sT1

IN

4 limsup limsup/ 9s(An) dAgn
{Aa>N(s)}

sT1 n—oo
< 4limsuplimsup J;(A1n,A2n) =0

- sT1 n—oo

which proves the third statement in (2.24). o

The proof of the Corollary follows from (2.23) and inequality (2.9).

Now we will study the distribution of the logarithm of the likelihood ratio In %.
In contrary to other papers we do not assume that A;(X) < oco. But if the last
condition is violated then the representation of In g,’;—i: in Karr [4] is not applicable.
Therefore we employ the representation (2.19) of the Hellinger integral which is the
moment generating function of In %L to get the characteristic function. To derive

the characteristic function of the loga;ithm of likelihood ratio we suppose Pa, ~ Pa,
(PA, € Pa, and Py, < Py,) which is equivalent to A; ~ Az and J% (A1,Az) <oo by
Theorem 1. Note that in this case both

dPa
_ . 2.
e(2) /exp {zln dPA,} dPa, (2.26)

and

Y(2) = / (zM1 4 (1= 2)A2 = A{A)77) dv
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are well defined for 0 < Re(z) < 1, which follows from the inequalities

exp {(s +it)In jg:: } < (:2’:: ) ’ (2.27)
and )
l2A+ (1= 2) = M| < C(1) (\/X— 1) (2.28)

where A = %, C(t) is some constant and z = s + it. Note that both ¢ and 9 are
analytic functions in the stripe 0 < Re(z) < 1. The uniqueness theorem for analytic
functions and ¢(s) = exp {—%(s)} (see (2.19)) imply that

p(z) = exp{~1(2)} (2.29)

for every 0 < Re(z) < 1.
Given two real or complex valued functions f, g on the real line we write | f| < |g]
if there is some constant ¢ such that

17(2)] < clg(=)|

for every =z € IR;. Using this notation we remark that for every fixed t € IR1

et —1— itl_f—x_z < Iy () + [zl IR \[-1,1)(%) (2.30)
< ey
and similarly
ef_l-ﬂf;5 5(e%=-—1)2. (2.31)

Note that 1 )
Jy(A1,A2) = 5/ (C%IM - 1) dA; .

Consequently, if J %(Al, A3) < oo then the integrals

a= / (TT;-]_(HTE\W +1- A) dA; (2.32)

itina _ 7 _ __itlnA
/ (6 =Tz
are well defined.

Let K(t,z) be the kernel

and

it 12 1422
K(t,:c) = <ez~—1-l—+—;§)—zT,$¢0

K(t,a:) = - z=0.
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Introduce a measure « by

K(B) = I%/\)—zlg\{g}(ln /\) dA,. (233)

Note that Jy (A1, Az) = L [(¥A=1)?dA; < oo and

12?11\1),\)2 < (VA-1)

imply that « is finite. Assume 0 < s <1 and o > 1 such that as < 1 then

dPs, \'¢
2 dPy, < 1.
/ (dPAz) As =

S
Hence (%) ,0<s< i—, is uniformly integrable and (2.27) implies

. . .y dPa
lsllr(r)up(s-i-zt) = /exp {zt In P, } dP,,.
Moreover, (2.28) and the Lebesgue Theorem yield
liﬁ)u/;(s +it) = / (itA + (1 —it) — X**) dA,.
Consequently by (2.29)

v dPa, . . i
Ep,, exp{ztln dP: }:exp{—/ (ix+(1 —it) — e'tln}) dAQ}. (2.34)

2

The representation of the characteristic function of In A in (2.34) yields

dPa . .
Ep,, exp {zt In dPx, } = exp {zta + / K(t,z) n(dx)} .

Recall that the characteristic function ¢(t) of every infinitely divisible distribution
Q@ on the real line IR; has the representation

o(t) = exp {iat + / K(t,z) fc(dx)}

where « is a finite measure and the characteristic pair (a, £) is uniquely determined.
Thus we get the following statement.

Proposition 2. If Py, ~ P, then the distribution of In 5™+ dp“ (w.r.t. Pa,) is

infinitely divisible with the characteristic pair (a, k) where a is deﬁned in (2.32) and
K is given by (2.33).

We recall to the following well-known criteria for the weak convergence, denoted
by =>, of infinitely divisible distributions (see Petrov [15]).
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Proposition 3. If Q, Q;, Q2, ... are infinitely divisible distributions with charac-
teristic pairs (o, k), (a1, k1), (@2, K2), . .. then

Qn = Q, asn—oo

iff

an, — a,Kp, — K, asn— oo.

Denote by N(u,0?) the normal distribution with mean p and variance o > 0,
where N(p,0) = 8, is the é-distribution concentrated at the point pu. Note that
N(u,0?) has the characteristic pair a = i, k = 026p.

Furthermore, if the infinitely divisible r.v. X has the characteristic pair (a, k)

then obviously Y = £=2 ' £ 0 has the characteristic pair (&, k) where

& = a- % -/ (K <%x) - K (t%)) k(dz) (2.35)
/ In (%) k(d2). (2.36)

Suppose now Py, ,, i = 1,2 are distributions of Poisson processes with state spaces
(Xn, An) and assume Py, , ~ Pa,, for every n. Set

(B)

dPAl.n A = dAl,n
dPA,_n’ " dAzn

L, —a, !
PAQ,"> = PA2,n o < b ) .

Theorem 2. If a,, and b,, are real numbers with b, # 0 and the condition PA,,» ~
Py,,, is fulfilled then

L, =1n

and

Qn = N(u,0?)

as n — oo, iff
. Am—=1=1nA,
Jim | 2 gt an -

dn 2.37
bn ( )
t (. In), (InX,)? _
—/ (I{ <E,ln An> - K (t, bn )) 1+ (ln An)z dA2,n] = M

. 1 (ln An)z _ 2 2.38
LR ) Thgaaye o = 0 (239
.1 (In),)?
lim —/ —_— —dAy, = 0 (2.39)
n—oo b,zl {lInx.|>¢€} 1+(ln/\n)2 2

for every € > 0.
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Proof. Let (an, kn) be the characteristic pair of Lﬂﬁ‘l By (2.36) the conditions

(2.38), (2.39) are equivalent to the weak convergence of the measures &, to 628. In
view of (2.35) the condition (2.37) is nothing else than oy, — p. O

For infinitely divisible distribution with finite second moments both the rep-
resentation of the characteristic function and corresponding limit theorem can be
simplified. If @ is an infinitely divisible distribution with

/ ¢ Q(dz) = exp {iat + / K(t,z) n(dt)}

then
/:02 Q(dz) < 00 <= /1‘2 k(dz) < oo. (2.40)
Introduce the kernel L by
L(t,z) = Eij—_x—i—ﬂ ifz#0
L(t,z) = —%tz ifz=0.
Then
/ ¢ Q(dz) = exp {iat + / L(t, z) p(d:l:)} (2.41)
where
u(B) = /B (1 + z%) k(dz) (2.42)
B = a+/zfc(dx). (2.43)
If Po, ~ Pp, then by the definition of  in (2.33) and relation (2.40)

E lndPAl 2<oo = /a:zfc(d)<
Pa \I" 3By z) < 00

= /(ln A)2dA; < 0.

Under this condition we obtain from (2.34)

Ep,, exp {itjg\\:} = exp {/ (e —it(A—1) = 1) dAz}
exp {ita + / L(t,z) p(dz)}

where

a = /(lnA—A+l)dA2 (2.44)

n(B)

/ (InX)? Ip\(o}(In ) dA, (2.45)
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and A = dﬁa Now we are ready to formulate a limit theorem for the distribution of
the logarithm of the likelihood ratio of distributions of Poisson processes with the
second moments finite. Note that the relations (2.44) and (2.45) yield

Ep,. In dPa /(1n,\ —A+1)dA, (2.46)
2 dPa,

dPs,
Ve, (‘ dPA,)

Theorem 3. Suppose Pa, . ~ P4, and

/ (In \)2 dA,. (2.47)

= / (InXp)?dA;, < co. (2.48)
Put
a, = /(ln A —=An+1)dAg,.
Then
Ln — Un

c ( ; a PA“) = N(0,1)
iff )

o / (In An)? dAsg,p "= 0 (2.49)

n J{|InX.|>¢}

for every € > 0.

Proof. The proof follows from the fact that infinitely divisible distributions with
characteristic pairs (Bn, pn) and variance 1 converge weakly to a standard normal
distribution iff 8, — 0 and p, = 6o as n — co. Let (fn, tn) correspond to —nb:-‘h
Then by (2.46) we have 8, = 0. In view of (2.45) and (2.47), the relation (2.49) is
equivalent to u, = 8o, n — oo which completes the proof. 0

Remark 1. If F;, denotes the distribution function of L"-’—“‘ under Py, , and ® is
the standard normal distribution function then Theorem 3 states that Fj(z) —
®(z) for every z. As @ is continuous it follows that A, =sup, |Fn(z)— F(:c)l =2o.
Under weak additional assumptions one can establish upper bounds for A,, in terms
of a,,b, and A;,. These bounds correspond to the Berry-Esseen inequality for
normalized sums of i. 1. d. random variables. For details we refer to Lorz and Heinrich

[13]. Here one can also find an Edgeworth expansion for F,.

In special situations it may happen that the distribution of the logarithm of
likelihood ratio converges in distribution without linear transformations, i. e. a, = 0,
b, = 1. Such situations are met in localized models which will be studied in the next
chapter. It turns out that in this case the expectation y in the normal distribution
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in Theorem 2 must take on a special value. To be more precise we suppose that for

dP, I
Ly = In gp2= holds
L (Ln|Pa,,) = N(p,o?). (2.50)

Then by the first Lemma of LeCam (see Strasser [16]) the sequence {Pa, .} is
contiguous w.r. t. {PA“} iff

/ey N(u,0?)(dy) = 1. (2.51)
We have
/ey N(p,0?)(dy) = / \/_21_7r_aey_%$y_:‘,‘£ dy = exp {u + %0,2} .

Hence (2.50) implies p = —$0?.

contiguous sequences.

Now we formulate a limit theorem for L, for

Theorem 4. If Pj, , ~ Py, for every n then

L(Ln|Pr,,) = N (—%02,02) (2.52)
iff
{PAl,n} b {PA;,..} (2.53)
2
et =T o and (2:54)
(In ’\ﬂ)2 n—o0o0
——=dA;y, — 0 2.55
/{I nan>e} 1+ (In)q)2 2, (2.55)

for every € > 0.

Proof. Suppose that (2.52) is fulfilled. Then {Pa, .} <> {Pa, .} follows from
the first Lemma of LeCam. The conditions (2.54) and (2.55) follow from (2.38)
and (2.39), respectively, in Theorem 2. Conversely, assume (2.53), (2.54), (2.55) are
fulfilled. Then Theorem 2 yields that

im limsup/ (\/)\_,,_— 1)2 dAz, = 0. (2.56)
{A.>N}

1
N—oo pnaco

We have from (2.55) and (2.56)

InA\, — A\, +1
—_——————dAy, — 0 2.57
/{| Inaafze} 1+ (nAs)? 2 (2:57)

for every € > 0. As limz_,; ’”—’(‘%:—:lj'ii = I we obtain from (2.54) and (2.57) that
) Ind, = An +1 o?
1 ————dAy = ——
nooo ] T+ (Inhg)? T TR

Hence (2.37) in Theorem 2 is fulfilled and the proof is complete. o
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3. LOCAL ASYMPTOTIC NORMALITY OF DISTRIBUTIONS OF
POISSON PROCESSES

Suppose P, is the distribution of a Poisson point process with state space (X, .A)

and o-finite intensity measure A. If f; = 3 i_, aijl4,; are step functions with
A(A; ;) < oo then for

Y= [fide-0)= [fde- [ 100

it holds
EpY(N1)Y(f2) = /f1f2 dA. (3.1)

If f € Ly(A) is any function then we choose a sequence of step functions f, € L2(A)
with

/(f—f,.)ZdA =20.

The relation (3.1) shows that Y (fa) is a Cauchy sequence in L2(Pa) which converges
to some element which will be denoted again by Y (f) or by

[ rate-n).

Note that by construction (3.1) holds for every fi, f2 € L2(A). By approximation
of f € La(A) by step functions one can see that

Ep, exp{isY(f)} = exp {/ (e”" —1—ifs) A(ds)} (3.2)
= exp {/L(f, $)I{y20y(s) fz(s),A(ds)} .

Hence Y(f) = [ fd(» — A) is infinitely divisible with characteristic pair

(B, 1) = (0, / Logs£0(5) fz(s)A(ds).) (3.3)

Assume now that ®; and &, are Poisson point processes with finite intensity mea-
sures A; and Ag, respectively, which are assumed to be equivalent. Then by inequal-
ity (2.16) and Proposition 1 we have Py, ~ Pj,. Set A = :;'—/‘&. Due to Karr [4] the

density g;-:l; admits the following representation

::;2: (¢) = exp { / InAdyp — Ay (X) + Az(X)} : (3.4)

For any fixed B € A we denote by Mp the o-algebra of subsets of M generated
by the mappings Z4(p) = ¢(A), AC B, A€ A. Let Py, i = 1,2 be equivalent
distributions of Poisson point processes with o-finite intensity measure A;. Denote
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by Pp,a, the restriction of Pa, to Mp. Then by (3.4) for every B with Ai(B)<oo
1=1,2

dP,
AP ) = exp{ [ nddp = M(B)+ Ax(B) (35)
dPpA,
Assume now Py, ~ P, and choose By C B, C ... C &, B; € A sucjlpthat
U2, Bi = X. Then Mp, C Mp, C ... and M = o (U2, MB,). HenceﬁZ—%L
is an {Mp, }-martingale which converges to d——P—L in Ly (Pr,) and Pj,-a.s. Conse-
quently,
{/ InAdp — A1(Bn) + Ag(Bn)} Pp,(dp) =0. (3.6)
n— 00 B"

Assume now [(InA)2dAz < oo and [(A —1—1InA)dAs < co. Then
/ InAdp — Ay(Bp) + As(Bn) = / (In ) d(p — A) — / (A—1—1InA)dA;
B, B, B,

converges in the sense of Ly(Pa,) to [(InA)d(p — Az) — f[(A =1 —InX)dA,. From
the represention (3.6) we get

dPAl

*(¢) = exp {/(m d(p — Az)—/()\—l—ln/\)dm} (3.7)

Now we turn to the concept of local asymptotic normality of families of distributions
of Poisson processes. To be more precise, we suppose that (Xi, 4;), i =1,2,... are
measurable spaces which play the role of state spaces. Introduce (M;, M;) in the
same way as (M, M). Suppose © C IRy where IRy is the k-dimensional Euclidean
space. Assume that the interior ©° of © is nonempty and A;, J € © are o-finite
measures on (X;, A;). We suppose also that

PAi,"x ~ PA.‘.ﬂz (38)

forevery i =1,2,..., 91,9, € ©. For a k x k-matrix A = (a;j)1<i j<k We define the

norm
n 3
1Al = Z a?,j .
1,j=1
n—00

Now fix 99 € O° and a sequence A, of k x k-matrices with ||A,| — 0. Introduce
the local parameter h in the following way

Qn,h = P, nh (39)

where Hn,h = An,do+A,.hy he H, = {h : Jo+ Anh € @} The family (Qﬂ,h)heH,. 1S
called locally asymptotically normal if there is a sequence of r.v. Z, : (M, M,,) —
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(IRk, Bi) called central sequence, such that the following expansion of the logarithm
of the likelihood ratio holds

dth 2
1 — = (Zn, h) [|A||* + Rn 3.10
0 T = (2, ) 4] (3.10)
where
L(Zn|Qno0) = N(0,I) asn — oo (3.11)
and
R,.™=30 Qn o-stochastically. (3.12)

I is the k-dimensional unit matrix.

Remark 2. The notion of local asymptotic normality (LAN) goes back to LeCam [7].
We refer to Strasser [16] p.408 for further historical remarks.

Set dpn
/\n,h = d -
Hn,0
Lppy = In 38“2
n)

First of all we present such necessary conditions for the LAN-property do not using
the special structure of the central sequence.

Proposition 4. If (Qn a)ren, from (3.9) has the LAN-property then

{Qn,n} < >{Qn 0} (3.13)
/ LTV (3.14)
(inanal>e} 1+ (nAq0)2 n,0 .
(]Il An,h)2 n—oo

Proof. The LAN-property implies that
LLnol@no) = N (=2 IIBI2, 47
n,0|%¥¢n,0 2 ’ I .

The application of Theorem 4 yields (3.13), (3.14) and (3.15). o

To prepare the next Theorem we need a suitable approximation of the likelihood
ratio. For every N = 1,2,... we denote by Q"N, » the distribution of a Poisson process
with intensity measure

AYW(B) = /B (Ana I nannlsN) + I awal>N}) ditno-



Contiguity and LAN-Property of Sequences of Poisson Processes 299

Lemma 1. If {Qnn} <D>{Qn} then

/

where a(n, N(n)) — 0 for every sequence N(n) — oo as n — oo.

dQn,h dQN
dQn,O dQn

dQn,0 < a(n,N)

Proof. We use the well-known inequality (see Strasser [16]) for the variational
distance ||P, — Pa|

dP; dP
1P Pl = | ] 1 _ 4P

=

2(1- HY(Py, Py))

d@

IA

[8(1- H%(PI,PZ))]%

IA

By the definition of Q,’:”h and (2.19)

1 2
H1(Qn,h, QY ) = exp {—5 /“n)‘n'th (\/ Anh — 1) d#n,o} (3.16)

Set

1 2
bi(n, N) = —/ (\/,\,,,h - 1) dptn 0
2 Jinaan>N}

and note that b;(n, N) is nonincreasing in N. Hence for every N(n) — 0o,n — oo
by Theorem 1 and {Qn 1} < {Qn 0}

limsup by (n, N(n)) < llmsup limsup by(n, N) = 0.

n—oo n—00

Analogously, for

1 2
bz(Tl,N) = —/ (V /\n,h - 1) dl‘n,o
2 {=InA,,N>N}

2
1 1
= _/ -1 dl‘n,h
2 Jn 25 >M) | Ann

we obtain from {Qn,0} < {Qn,»} and Theorem 1 that
limsup bz(n, N(n)) =0
71— 00

To complete the proof we have only to set
a(n, N) = [8(1 = exp {~ (b1 (n, N) + ba(n, N))})}} . o

An essential step for proving the LAN-property is the linearization of the loga-
rithm of the likelihood ratio. For this aim we linearize A, 5 and introduce a suitable
concept of L-differentiability for the sequence A, 5.
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Definition 1. Suppose Ap 4, 9 € © C IR} are o-finite measures on (X(?), A())
with Ap 9 <€ An s, for every ¥ € ©. Set

Ap = dAn 9o+ Ann
nh=—F——.
dAn v,

The sequence {fin,h, h € Hn} = {An9o4a.h, h € Hp} is called La(pn,0)-differentiable
with derivative I, if l,, are A, — Bi-measurable mappings into Ry with I, € La(ftn o)

and
/ (2 (VA —1) - <i,,,Anh>)2 dptn o "= 0 (3.17)

as n — oo for every h € H.

Now we are ready to formulate conditions for the LAN-property under the con-
tiguity condition which is necessary in view of Theorem 4. Furthermore we give an
explicit expression for the central sequence. Recall that pp n = An 9o+a.h, Qn,p =
PA, 90+Anh-

Theorem 5. Suppose Qn i ~ Qn,0 and {Qn 1} <>{Qn,0} for every h € Hn. As-
sume {pn n, h € Hp} is Lg(unlo)-differentiable with derivative I,,. If the conditions
(3.14) and (3.15) are fulfilled then @, », h € Hy, has the LAN-property and

Zn(p) = AT [ 1nd(p = ping)
is a central sequence.
Proof. Set B, x = {|InAy 4| < N}. Then
(nz)* < (Va-1)°
z—1—-Ilnz < (\/5:-—1)2

on {z :,|lnz| < N} and [ (y/Ann— 1)2 dpn,0 < oo imply that the representation
N
(3.7) may be applied to L}, =In jg:'; Hence with B, v = {|InAn n| < N}

By = [ (nda) dto i) - [ Gun=1=10204) dping
Bn,N

n,N

/B 2 (VAan - 1) d(p — pin0)
+/:9 (ln Anp—2 (\/m— 1)) d(p = Kn,0)

(ln ’\n h)2 )
) - Aﬂ - 1 —_ l Aﬂ d n
+/Bn,N (2(1 + (In Ap n)?) (A, nAnn) | ditn o

(In A, h)2
- —— Y dp,
/B 2T+ (In A p)?) im0

= Tl,n + ...+T4,n.
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We obtain from (3.1) and the inequality (a + b)% < 2(a? 4 b?)
EQn.o({Zn,h) — Tl,n)2

< 2/ (2 (\/m— 1) - (A?,‘i,,,h>)2 dptn 0 (3.18)
2
+-/{| InAn n|>N} 8 (\/m_ l) dun’o
< 2/ (2 (\/m— 1) - (Afin,h»z dpin,0 + 16(by(n, N) + by(n, N))(3.19)

with b;(n, N) from the proof of Lemma 1. Set for ¢t > 0

1+ (Inz)?
62(t) = su Inz-2(vz-1)P ==L
) {x:lln£|§t} | ( )I (Inz)?
(Inz)? 1+ (Inz)?
d 6(t) = _AE) oz —1-1
" 3( ) {z:|Inz|<t} 1+ (ln :12)2 (Z n:c) (ln 1,‘)2

and note that 6;(t) 290. To estimate T»,n we apply (3.1) and obtain

2 (InApp)? d
Eq..I3n < 62(¢) ———-l—{-(ln/\,.‘h)z Hn,0 (3.20)
(InAp 5)?
+62(N ———————dpno.
2( ) {IlnXAn,n|>e} 1+(ln)‘n,h)2 0
Furthermore
(In /\,,’;.)2

T30 < 53(6)/ T+ (I dn )2 dpin,0 (3.21)

(ln An,h)z
(inanal>ey 1+ (InAg 5)2
By assumption (3.14) we find a sequence ¢, — 0 such that

(ln /\n h)2 n—oo
——— —dpno — 0. 3.22)
/{| mamn|>ea) 1H AR ARR)ZE (

+63(N) dpn 0.

Now we choose a sequence N(n) "= oo such that

(ln An h)2 n—oo .
—— A g0 =0, i=1,2. 3.23)
(U Annl>en} 1+ (IN A5 5)? fin (

We have Ty, — —3||h||? by assumptions (3.15) and (3.22). The inequalities (3.18),
(3.20) and (3.21) show that

8i(N(n)) -

1 2
limsup Eq, , ((Z,,, h) — L"N,(h") + §||h||2)

n— 00
< li;risol:p/ ((2\/m—- 1) - <Ag‘in,h>)2 dpn,0

+ limsup 16(b1(n, N(n)) + b2(n, N(n))).

71— 00
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The second term vanishes by the same arguments as in the proof of Lemma 1. The
first term on the right hand side is zero by the La(pn o)-differentiability. Thus we
arrive at

lim Eq, o(<z",h> ey 1 ||h||2)

n-—o00

which implies

N(n)
dQ, Lo
dQ,. — = exp (Zn, h) — §||h|| + Rn(h) (3.24)
where R,(h) — 0 Qn o-stochastically. We obtain from Lemma 1 that
dQn,h 1 >
Tt = exp { (20, - I+ T} (3.9

with some 1%,, which converges @, o-stochastically to zero. From Theorem 4 we

already know that
dth 1 2 2
n, —=||h )
() IR G R

for every h € IR;. Hence by the Cramer—Wold technique
L(Zn|Qno) = N(0,I)
which completes the proof. O

We derived the asymptotic normality of Z,, from the asymptotic normality of
Lnn. To do this one has to verify the Lindeberg condition (3.14), (3.15) for every
fixed h. As A, n depends on h nonlinearly, in general, these conditions are not easy
to handle. Therefore we now directly impose conditions on I, to guarantee the
asymptotic normality of Z,.

Consider [, as column vector and introduce the matrix X,, by

Th = /iniZ dptn,0-

Note that the covariance matrix Cz, of Z, from Theorem 5 is given by A’,{E,,A,,.
As the distribution of Z, is aimed to converge to N (0, I) it is natural to require that
1

Cz, = I. If det(Z,) # 0 the condition Cz, = I can be fulfilled with A, = £, ?

Note that in this case y
/<A§1,,,h> dptno = [IAI.

Furthermore, if p, 4 is La(pn,0) differentiable we obtain

lim [ 4 (./,\,,,h - 1)2 dun,o = [|A|? (3.26)

n— 00

and

nlm/ '4 (Vo - 1)2 ~ (AT, h>2' dftn 0 = 0. (3.27)
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Theorem 6. Suppose Qna ~ Qno and {Qnr} < >{Qn0} fpr every h € Ry.
Assume {ftn h, h € Hp} is La(pn,0) differentiable with derivative I, and det(Z,) # 0

for every n and A,, = E;%. If
Za(p) =553 /i,, d(p — pin o)
then {Qn »} has the LAN-property with central sequence Z, iff

im [, =7 %0 dpno =0 (3.28)
PO IS 2 Hall>e)

for every € > 0.

Proof. The proof is splitted into several steps.
1. We have from (3.2)

EqQ..exp{i(Za,h)} = exp {/ (ei<22%imh> -1- i<2;%in,h>) dpn,o}
exp {/ (ei("") —1—i(z, h)) K,n(d:c)} .

Consequently, Zy, is an infinitely divisible random vector with Eq, ,Zn, = 0,Cz, = I.
The criteria for the weak convergence of the distribution of such vectors to a standard
normal distribution yield that

L(Zn|Qn0) = N(0,I)

/ [|z||%6n (dz) == 0 (3.29)
{lizl[>¢}
for every € > 0. But (3.29) is the same as (3.28), which gives the necessity of (3.28).

2. To prove the sufficiency we use a similar splitting of Lf:’,h as in the proof of
Theorem 5. Set

Ly, = /B 2 (\/X,,_,,.— 1) d( = Hn,0)
n,N
+/B,.,N (ln/\,,';. -2 (\/m— 1)) d(p — #n,0)
+/ (2 (\/:\:;— 1)2 —(Anp—=1=1n /\n,h)) dpn,o
Bn.,~n
_/ 2 (\/A—"_,;— 1)2 dlln,O
B, N

= Sl,n+ "'+S4,n‘
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To proceed as in the proof of Theorem 5 we put

Ay(e) = sup [Inz—2( x—l)l vz —1) 2
{z:]2(vVz-1)|<e}

and As(e) = sup
{z:,]2(vVZ-1)|<e}

and note that A;(e) — 0 as € — 0. Furthermore for every z with |lnz| < N
Inz—2 (V& - 1)] < AafeM) (2 - 1)°
and |2 (VT - 1)2 —(z-1- ln:c)l < As(eM) (Vz - 1)2.

-2

2(vz-1)’~ (- 1-In2)| (Vo - 1)

By the same arguments as in the proof of Theorem 5 we get for i = 2,3
FauoSin < 8a(6) [ (Vi =1) diing (3.30)

+aale): ‘/{lﬂ(\/m—l)lx}ng,.,h, (\/m— 1)2 Ytin.0

and

2
Sin < 800 [ (VEa=1) dhno

ely- n,h — ’ n,0-
+As(e™) (2(Fme1) >} B (\//\ ,h 1) dpin,

To estimate the second term on the right hand side we set
b1 =2 (Vah = 1) I, s Y20 = (S, ) I,
and note that by the definition of B, x
/\n,h S eN

on B, n and consequently [¢1n| < eV, Hence for every € > 0

/{I'ﬁx,n—%,nl)g} ¢f,n dpno < eNMpnpo ({]1/)1,,, — Y| > g})

4eN
2 / I'/)l,n - ¢2,n|2 dﬂn,O-

IA

Furthermore,

[ Wadume s [ Bndiino+ [ 92, i
{l¥1,n1>€} {1¥a.n1>5} {l¥1,n=%2,al>%5}

2 / 1m — Ya,nl? dbin +2 / Y2 dptno
{|¢2,n|> %}

4eN
—2/l¢1,n — Ya,n|* dptn 0.

IN
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Hence
4eN
/ 1.Z’f,nd#n,o < (2+_2_>/l¢1,n_¢2,nl2dﬂn,o (3.31)
{ld’l,nl)f} €
=3 V2, dtn.
{]¢'2,n|>%}
Note that )
2 2 ||y=3j
Vnl{jgani>5) < IBIP |2 2 I{ a5} (3.32)

The inequalities (3.31), (3.32) and the assumptions (3.17), (3.28) imply that for
every € >0,N >0

/{lz(m—l)be}nsm,\, (\/m_ 1) dpno =5 0.

Consequently there are N(n) — oo and €, — 0 as n — oo such that for i = 2,3

o (GN(")) /{|2(\/m—1)|>en}n3,.,~ (\/H" 1)2 dptn,0 =3 0. (3:33)

Note that limsup, o, [ (v/An,n — 1)2 dpn,0 < 00 as {Qn,n} <A{Qn,0}. Hence (3.30)

and (3.33) imply Eq, ,S3 ., "=%0. Similarly, Eq, ,S3,n —> 0. The statements

Eq,,(Sin— (Za,h))? "= 0 and San == —1||h|]| may be established as in the
proof of Theorem 5. Consequently,

LN

1
b= (Zn, ) = SIBI + Ra(B)

where R, (h) — 0 Qn o-stochastically. To complete the proof it remains to apply the
same arguments as in the proof of Theorem 5. =]

Remark 3. Necessary and sufficient conditions for {Qn s} < >{Qn0} are given
in (2.24), in Theorem 1. But sometimes it is more convenient to use the sufficient
conditions fromulated in Corollary 1. To be more precise let Qn,n ~ Qn,o for every
n,h € H,. Note that

Il(/"ﬂ.h)ﬂn,o) = / (/\n,h In An,h - An,h + 1) dﬂﬂ,o

and  I1(kn,0, n,h) = To(Hn,h, in,0) = / (Anp —1=InAn k) dun .

Hence

IO(ﬂﬂ.hwl‘ﬂ,O) + Il(l‘n,h;l—‘n,O) = /(An,h - 1) In An,h d/"ﬂ»o'
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Consequently, by the Corollary of Theorem 1,

limsup /(/\,,,;, —=1)InAp ndpn,e < 00

n—o00

implies {Qn 1} AD>{Qn,0}-

Now we study a situation in which the assumption of Theorem 6 are fulfilled.
Suppose Ay, ¥ € © C R, is a family of equivalent o-finite measures with

J% (Ao,A,}o) < 0o (334)

for every ¥ € ©. Assume Yo € ©° and put

_ dAy

Ao = .
’ = dAs,

Suppose Ay is La(Ay,) differentiable in the sense that there is some Iy € La(Ag,)
such that

/ (2 (Vo - 1) — g, (9 - 190))2 dAg, = o0 (|z9 = of’). (3.35)

Suppose we observe i.i.d. Poisson point processes @, ..., P, with common distri-

. . dPg .. .

bution P,,. We see from (2.34) that the distribution of In ﬁ'— w.r.t. P is identi-
[

cal with the distribution of In 3p™& w.r.t. Pas, . Consequently {( PA‘Mﬁh)n}

has the LAN property iff {Pn( } has the LAN-property. To establish

Aoo+#h)

the LAN-property for P"A'°+T/’=" we apply Theorem 6. First of all we note that

fnh=n (A,,0+71=,,) y Anh = /\,,0+71:,,. Set I, = i.go. Then
.1 2
J (2 (VAor = 1) = (i =) dins (3.36)

2
= / (2\/5 (\/’\00+7’;h - 1) - i!’oh) dAg, =30.

Hence (3.17) is fulfilled. Suppose I(¥) = fi;‘;o dAo > 0. Then T, = nI(do) > 0
and

. 2 N n—
2;%111 dl“n,O = Igo dA!’o =30.

1
12(9) {1(90)v/mlisol>e}

/{”z:%in >e}

Hence (3.28) is fulfilled. Now we prove the contiguity {@nr} < >{Qno}- The
relation (3.36) implies

lim sup / (2 (VAar - 1))2 dpin 0 < 0. (3.37)

n— 00
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For every € > 0 we get from (3.36)

2 .
lim sup / (2 (,/A,,,,, - 1)) djtn 0 < limsup / h2i2_ dAy,.
{IAn,n=1]>¢} {IAn,n=1]>¢}

Relation (3.37) yields
Avo ({IAnn — 1] >€}) =3 0.
Hence by the Lebesgue Theorem

limsup /{IA..,;.—1|>e} (2 (\/m_ 1))2 dpgn,o=0.

n— 00

Hence

2
lim sup limsup/ (\//\,,,h - 1) dpno=0
{"n,N)N}

N—oco n—oo

and

2
. . 1
limsup lim sup/ —1) dpnn=0.
N—oo n—oo {]TI,F>N} \//\n,h

The contiguity {Qn,»} <>{Qn,o0} now follows from Theorem 1. Summarizing the
results we get the following Proposition.

Proposition 5. Assume the family Ay is Lo-differentiable at ¥y in the sense of
(3.35), the measures Ay, ¥ € O are equivalent and (3.34) is fulfilled. If I(do) =
fl?,o dAyg, > 0 then (PA60+:}=h) has the LAN-property.

(Received April 16, 1997.),
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