Previous |  Up |  Next

Article

Keywords:
robust exponential stability; deterministic uncertainties; nonlinear system; system design; robust controller
Summary:
The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.
References:
[2] Brogliato B., Neto A. T.: Practical stabilization of a class of nonlinear systems with partially known uncertainties. Automatica 31, (1995), 1, 145–150 DOI 10.1016/0005-1098(94)E0050-R | MR 1312210 | Zbl 0825.93650
[3] Chua L. Q., Wu C. W., Huang A., Zhong G. Q.: A universal circuit for studying and generating chaos. Part 1. IEEE Trans. Circuits and Systems (1993), 10, 732–744 MR 1255706 | Zbl 0844.58053
[4] Corles M.: Control of uncertain nonlinear systems. ASME J. Dyn. Syst. Meas. Control 115 (1993), 362–372 DOI 10.1115/1.2899076
[5] Dubrov A. M., Zuber I. E.: Design of exponentially stable control systems for a range of nonlinear processes. Automat. Remote Control (1989), 8, 33–40 MR 1019864
[6] Fradkov A. L., Pogromsky A. Yu., Markov A. Yu.: Adaptive control of chaotic continuously–time systems. In: Proc. 3rd EC Conference, Roma 1995, pp. 3062–3067
[7] Gaiduk A. R.: Analytical controller design for a class of nonlinear systems. Automat. Remote Control (1993), 3, 22–33
[8] Gaiduk A. R.: Analytical nonlinear control systems design. In: Proc. 3rd EC Conference, Roma 1995, pp. 1503–1505
[9] Jury E. I.: Robustness of discrete systems: A review. In: Proc. 11th IFAC World Congres, Tallin 1990, pp. 184–186 MR 1071016
[10] Konstantopoulos I. K., Antsaklis P. J.: New bounds for robust stability of continuous and discrete–time systems under parametric uncertainty. Kybernetika 31 (1995), 6, 623–636 MR 1374150 | Zbl 0872.93065
[11] Kozák Š.: Simple and robust PID controller. Appl. Math. Comput. 70 (1995), 2–8 DOI 10.1016/0096-3003(94)00119-O
[13] Kučera V., DeSouza C. E.: A necessary and sufficient conditions for output feedback stabilizability. Automatica 31 (1995), 1357–1359 DOI 10.1016/0005-1098(95)00048-2 | MR 1349414
[14] Leitman G.: One method for robust control of uncertain systems: Theory and practice. Kybernetika 32 (1996), 1, 43–62 MR 1380197
[15] Niculescu S. I., DeSouza C. E., Dugard L., Dion J. M.: Robust exponential stability of uncertain systems with time–varying delays. In: Proc. 3rd EC Conference, Roma 1995, pp. 1802–1807
[16] Poolla K. S., Shamma J. S., Wise K. A.: Linear and nonlinear controller for robust stabilization problem: A survey. In: Proc. 11th IFAC World Congres, Tallin 1990, pp. 176–183
[17] Prokop P., Corriou J. P.: Design and analysis of simple robust controllers. Internat. J. Control 66 (1997), 6, 905–921 DOI 10.1080/002071797224450 | MR 1686734 | Zbl 0875.93137
[18] Gong, Zhiming, Wen, Changyun, Mital, Dinesh P.: Decentralized robust controller design for a class of interconnected uncertain systems: with known or unknown bound of uncertainty. In: Proc. 3rd EC Conference, Roma 1995, pp. 2940–2945 MR 1391781
[19] Qu, Zhihua, Dorsey J.: Robust control by two Lyapunov functions. Internat J. Control 55 (1992), 1335–1350 DOI 10.1080/00207179208934288 | MR 1170046 | Zbl 0751.93019
[20] Qu, Zhihua: Asymptotic stability of controlling uncertain dynamical systems. Internat. J. Control 59 (1994), 1345–1355 DOI 10.1080/00207179408923134 | MR 1277266 | Zbl 0806.93044
Partner of
EuDML logo