[1] Berger J. O.:
Statistical Decision Theory and Bayesian Analysis. Second edition. Springer, New York 1985
MR 0804611 |
Zbl 0572.62008
[2] Brown L. D.:
Fundamentals of Statistical Exponential Families. Lecture Notes 9. Inst. of Mathem. Statist., Hayward, California 1986
MR 0882001 |
Zbl 0685.62002
[3] Bock H. H.: A clustering technique for maximizing $\phi $-divergence, noncentrality and discriminating power. In: Analyzing and Modelling Data and Knowledge (M. Schader, ed.), Springer, Berlin 1992, pp. 19–36
[4] Devijver P., Kittler J.:
Pattern Recognition: A Statistical Approach. Prentice Hall, Englewood Cliffs 1982
MR 0692767 |
Zbl 0542.68071
[6] Hampel F. R., Rousseeuw P. J., Ronchetti E. M., Stahel W. A.:
Robust Statistics: The Approach Based on Influence Functions. Wiley, New York 1986
MR 0829458 |
Zbl 0733.62038
[8] Hornik K., Stinchcombe M., White H.:
Multilayer feedforward networks and universal approximation. Neural Networks 2 (1989), 359–366
DOI 10.1016/0893-6080(89)90020-8
[9] Küchler U., Sørensen M.:
Exponential families of stochastic processes: A unifying semimartingale approach. Internat. Statist. Rev. 57 (1989), 123–144
DOI 10.2307/1403382
[10] Lapedes A. S., Farber R. H.:
How neural networks work. In: Evolution, Learning and Cognition (Y. S. Lee, ed.), World Scientific, Singapore 1988, pp. 331–340
MR 1036563
[11] Mood A. M., Graybill F. A., Boes D. C.:
Introduction to the Theory of Statistics. Third edition. McGraw–Hill, New York 1974
Zbl 0277.62002
[12] Müller B., Reinhard J., Strickland M. T.: Neural Networks. Second edition. Springer, Berlin 1995
[13] Ripley B. D.:
Statistical aspects of neural networks. In: Networks and Chaos (O. E. Barndorff–Nielsen, J. L. Jensen and W. S. Kendall, eds.), Chapman and Hall, London 1993. pp. 40–123
MR 1314652 |
Zbl 0825.68531
[14] Vajda I.: About perceptron realizations of Bayesian decisions about random processes. In: IEEE International Conference on Neural Networks, vol. 1, IEEE, 1996, pp. 253–257