Previous |  Up |  Next

Article

Title: Uncertain input data problems and the worst scenario method (English)
Author: Hlaváček, Ivan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 3
Year: 2007
Pages: 187-196
Summary lang: English
.
Category: math
.
Summary: An introduction to the worst scenario method is given. We start with an example and a general abstract scheme. An analysis of the method both on the continuous and approximate levels is discussed. We show a possible incorporation of the method into the fuzzy set theory. Finally, we present a survey of applications published during the last decade. (English)
Keyword: uncertain input data
Keyword: the worst-case approach
Keyword: fuzzy sets
MSC: 49J20
MSC: 74C10
MSC: 74K20
MSC: 93C20
MSC: 93C25
MSC: 93C41
idZBL: Zbl 1164.93354
idMR: MR2316152
DOI: 10.1007/s10492-007-0010-9
.
Date available: 2009-09-22T18:29:19Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134671
.
Reference: [1] I. Babuška, F. Nobile, R. Tempone: Worst case scenario analysis for elliptic problems with uncertainty.Numer. Math. 101 (2005), 185–219. MR 2195342, 10.1007/s00211-005-0601-x
Reference: [2] Y. Ben-Haim: Information-Gap Decision Theory: Decisions Under Severe Uncertainty.Academic Press, San Diego, 2001. Zbl 0985.91013, MR 1856675
Reference: [3] Y. Ben-Haim, I.  Elishakoff: Convex Models of Uncertainties in Applied Mechanics.Elsevier, Amsterdam, 1990.
Reference: [4] A. Bernardini: What are the random and fuzzy sets and how to use them for uncertainty modeling in engineering systems?.In: CISM Courses and Lectures No. 388, I. Elishakoff (ed.), Springer-Verlag, Wien, 1999.
Reference: [5] B. V. Bulgakov: Fehleranhäufung bei Kreiselapparaten.Ingenieur-Archiv 11 (1940), 461–469. 10.1007/BF02088988
Reference: [6] J. Chleboun: Reliable solution for a 1D  quasilinear elliptic equation with uncertain coefficients.J.  Math. Anal. Appl. 234 (1999), 514–528. Zbl 0944.35027, MR 1689404, 10.1006/jmaa.1998.6364
Reference: [7] J. Chleboun: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: Sensitivity analysis and numerical examples.Nonlinear Anal., Theory Methods Appl. 44 (2001), 375–388. Zbl 1002.35041, MR 1817101, 10.1016/S0362-546X(99)00274-6
Reference: [8] J.  Chleboun: On fuzzy input data and the worst scenario method.Appl. Math. 48 (2003), 487–496. Zbl 1099.90081, MR 2025958, 10.1023/B:APOM.0000024488.86492.fb
Reference: [9] J. Chleboun, P. Kocna: Isotope selective nondispersive infrared spectrometry can compete with isotope ratio mass spectrometry in cumulative ${}^{13} \text{CO}_2$ breath tests: Assessment of accuracy.Klin. Biochem. Metab. 13 (2005), 92–97.
Reference: [10] E. J. Haug, K. K. Choi, V. Komkov: Design Sensitivity Analysis of Structural Systems.Academic Press, Orlando, 1986. MR 0860040
Reference: [11] I. Hlaváček: Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function.Appl. Math. 41 (1996), 447–466. MR 1415251
Reference: [12] I. Hlaváček: Reliable solutions of elliptic boundary value problems with respect to uncertain data. Proceedings of the  WCNA-96.Nonlin. Anal., Theory Methods Appl. 30 (1997), 3879–3890. MR 1602891, 10.1016/S0362-546X(96)00236-2
Reference: [13] I. Hlaváček: Reliable solution of a quasilinear nonponential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients.J.  Math. Anal. Appl. 212 (1997), 452–466. MR 1464890, 10.1006/jmaa.1997.5518
Reference: [14] I. Hlaváček: Reliable solution of linear parabolic problems with respect to uncertain coefficients.ZAMM, Z.  Angew. Math. Mech. 79 (1999), 291–301. MR 1695286, 10.1002/(SICI)1521-4001(199905)79:5<291::AID-ZAMM291>3.0.CO;2-N
Reference: [15] I. Hlaváček: Reliable solution of an elasto-plastic Reissner-Mindlin beam for the Hencky’s model with uncertain yield function.Appl. Math. 43 (1998), 223–237. MR 1620616, 10.1023/A:1023228608356
Reference: [16] I. Hlaváček: Reliable solution of a Signorini contact problem with friction, considering uncertain data.Numer. Linear Algebra Appl. 6 (1999), 411–434. MR 1731015, 10.1002/(SICI)1099-1506(199909)6:6<411::AID-NLA178>3.0.CO;2-W
Reference: [17] I. Hlaváček: Reliable solution of a torsion problem in Hencky plasticity with uncertain yield function.Math. Models Methods Appl. Sci. 11 (2001), 855–865. Zbl 1037.74028, MR 1842230, 10.1142/S0218202501001148
Reference: [18] I. Hlaváček: Reliable solution of a perfect plastic problem with uncertain stress-strain law and yield function.SIAM J.  Numer. Anal. 39 (2001), 1539–1555. Zbl 1014.74015, MR 1885706
Reference: [19] I. Hlaváček: Worst scenario approach for elastoplasticity with hardening and uncertain input data.ZAMM, Z.  Angew. Math. Mech. 82 (2002), 671–684. Zbl 1099.74505, MR 1903014, 10.1002/1521-4001(200210)82:10<671::AID-ZAMM671>3.0.CO;2-2
Reference: [20] I. Hlaváček: Reliable solution in strain space of elastoplastic problems with isotropic hardening and uncertain input data.Math. Models Methods Appl. Sci. 12 (2002), 1337–1357. MR 1927028, 10.1142/S0218202502002082
Reference: [21] I. Hlaváček: Post-buckling range of plates in axial compression with uncertain initial imperfections.Appl. Math. 47 (2002), 25–44. MR 1876490, 10.1023/A:1021702816894
Reference: [22] I. Hlaváček: Buckling of a Timoshenko beam on elastic foundation with uncertain input data.IMA J.  Appl. Math. 68 (2003), 185–204. Zbl 1037.74018, MR 1968311, 10.1093/imamat/68.2.185
Reference: [23] I. Hlaváček: Plate bending problems with uncertain input data. I.  Classical problems., Submitted.
Reference: [24] I. Hlaváček, J. Chleboun: Reliable analysis of transverse vibrations of Timoshenko-Mindlin beams with respect to uncertain shear correction factor.Comput. Methods Appl. Mech. Eng. 190 (2000), 903–918. MR 1797723, 10.1016/S0045-7825(99)00452-1
Reference: [25] I. Hlaváček, J. Chleboun, and I. Babuška: Uncertain Input Data Problems and the Worst Scenario Method.Elsevier, Amsterdam, 2004. MR 2285091
Reference: [26] I. Hlaváček, J. Lovíšek: Control in obstacle-pseudoplate problems with friction on the boundary. Optimal design and problems with uncertain data.Appl. Math. (Warsaw) 28 (2001), 407–426. MR 1873903, 10.4064/am28-4-3
Reference: [27] I. Hlaváček, M. Křížek, and J. Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168–189. MR 1275952, 10.1006/jmaa.1994.1192
Reference: [28] I. Hlaváček, J. Lovíšek: Semi-coercive variational inequalities with uncertain input data.Applications to shallow shells. Math. Models Methods Appl. Sci. 15 (2005), 273–299. MR 2120000, 10.1142/S0218202505000364
Reference: [29] I. Hlaváček, J. Nedoma: Reliable solution of a unilateral contact problem with friction and uncertain input data in thermoelasticity.Math. Comput. Simul. 67 (2005), 559–580. MR 2111780, 10.1016/j.matcom.2004.08.001
Reference: [30] I. Hlaváček: Unilateral contact with Coulomb friction and uncertain input data.Numer. Funct. Anal. Optimization 24 (2003), 509–530. Zbl 1049.49007, MR 1995999, 10.1081/NFA-120023866
Reference: [31] I. Hlaváček, J. Plešek, and D. Gabriel: Validation and sensitivity study of an elastoplastic problem using the worst scenario method.Comput. Methods Appl. Mech. Eng. 195 (2006), 763–774. MR 2183622, 10.1016/j.cma.2005.02.010
Reference: [32] V. Krištof: An elliptic problem with a nonlinear Newton boundary condition and a double uncertainty.PhD. Thesis, Palacký University, Olomouc, 2004. (Czech)
Reference: [33] V. G. Litvinov: Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics.Birkhäuser-Verlag, Berlin, 2000. Zbl 0947.49001, MR 1774123
Reference: [34] J. Lovíšek: Reliable solution of parabolic obstacle problems with respect to uncertain data.Appl. Math. 48 (2003), 321–351. Zbl 1099.35054, MR 2008888, 10.1023/B:APOM.0000024480.06960.ea
Reference: [35] L. Nechvátal: Worst scenario method in homogenization. Linear case.Appl. Math. 51 (2006), 263–294. Zbl 1164.35317, MR 2228666, 10.1007/s10492-006-0015-9
Reference: [36] T. Roubíček: Relaxation in Optimization Theory and Variational Calculus.Walter de Gruyter, Berlin, 1997. MR 1458067
Reference: [37] M. Tužilová: Reliable solutions of a thermoelastic beam model with uncertain coefficients.PhD. Thesis, Palacký University, Olomouc, 2003. (Czech)
Reference: [38] H.-J. Zimmermann: Fuzzy Set Theory—and Its Applications.Kluwer Academic Publishers, Boston, 2001. MR 1882395
.

Files

Files Size Format View
AplMat_52-2007-3_2.pdf 311.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo