[2] Y. Ben-Haim:
Information-Gap Decision Theory: Decisions Under Severe Uncertainty. Academic Press, San Diego, 2001.
MR 1856675 |
Zbl 0985.91013
[3] Y. Ben-Haim, I. Elishakoff: Convex Models of Uncertainties in Applied Mechanics. Elsevier, Amsterdam, 1990.
[4] A. Bernardini: What are the random and fuzzy sets and how to use them for uncertainty modeling in engineering systems?. In: CISM Courses and Lectures No. 388, I. Elishakoff (ed.), Springer-Verlag, Wien, 1999.
[5] B. V. Bulgakov:
Fehleranhäufung bei Kreiselapparaten. Ingenieur-Archiv 11 (1940), 461–469.
DOI 10.1007/BF02088988
[9] J. Chleboun, P. Kocna: Isotope selective nondispersive infrared spectrometry can compete with isotope ratio mass spectrometry in cumulative ${}^{13} \text{CO}_2$ breath tests: Assessment of accuracy. Klin. Biochem. Metab. 13 (2005), 92–97.
[10] E. J. Haug, K. K. Choi, V. Komkov:
Design Sensitivity Analysis of Structural Systems. Academic Press, Orlando, 1986.
MR 0860040
[11] I. Hlaváček:
Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function. Appl. Math. 41 (1996), 447–466.
MR 1415251
[12] I. Hlaváček:
Reliable solutions of elliptic boundary value problems with respect to uncertain data. Proceedings of the WCNA-96. Nonlin. Anal., Theory Methods Appl. 30 (1997), 3879–3890.
DOI 10.1016/S0362-546X(96)00236-2 |
MR 1602891
[13] I. Hlaváček:
Reliable solution of a quasilinear nonponential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J. Math. Anal. Appl. 212 (1997), 452–466.
DOI 10.1006/jmaa.1997.5518 |
MR 1464890
[15] I. Hlaváček:
Reliable solution of an elasto-plastic Reissner-Mindlin beam for the Hencky’s model with uncertain yield function. Appl. Math. 43 (1998), 223–237.
DOI 10.1023/A:1023228608356 |
MR 1620616
[18] I. Hlaváček:
Reliable solution of a perfect plastic problem with uncertain stress-strain law and yield function. SIAM J. Numer. Anal. 39 (2001), 1539–1555.
MR 1885706 |
Zbl 1014.74015
[20] I. Hlaváček:
Reliable solution in strain space of elastoplastic problems with isotropic hardening and uncertain input data. Math. Models Methods Appl. Sci. 12 (2002), 1337–1357.
DOI 10.1142/S0218202502002082 |
MR 1927028
[23] I. Hlaváček: Plate bending problems with uncertain input data. I. Classical problems. Submitted.
[24] I. Hlaváček, J. Chleboun:
Reliable analysis of transverse vibrations of Timoshenko-Mindlin beams with respect to uncertain shear correction factor. Comput. Methods Appl. Mech. Eng. 190 (2000), 903–918.
DOI 10.1016/S0045-7825(99)00452-1 |
MR 1797723
[25] I. Hlaváček, J. Chleboun, and I. Babuška:
Uncertain Input Data Problems and the Worst Scenario Method. Elsevier, Amsterdam, 2004.
MR 2285091
[26] I. Hlaváček, J. Lovíšek:
Control in obstacle-pseudoplate problems with friction on the boundary. Optimal design and problems with uncertain data. Appl. Math. (Warsaw) 28 (2001), 407–426.
DOI 10.4064/am28-4-3 |
MR 1873903
[27] I. Hlaváček, M. Křížek, and J. Malý:
On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189.
DOI 10.1006/jmaa.1994.1192 |
MR 1275952
[28] I. Hlaváček, J. Lovíšek:
Semi-coercive variational inequalities with uncertain input data. Applications to shallow shells. Math. Models Methods Appl. Sci. 15 (2005), 273–299.
DOI 10.1142/S0218202505000364 |
MR 2120000
[29] I. Hlaváček, J. Nedoma:
Reliable solution of a unilateral contact problem with friction and uncertain input data in thermoelasticity. Math. Comput. Simul. 67 (2005), 559–580.
DOI 10.1016/j.matcom.2004.08.001 |
MR 2111780
[31] I. Hlaváček, J. Plešek, and D. Gabriel:
Validation and sensitivity study of an elastoplastic problem using the worst scenario method. Comput. Methods Appl. Mech. Eng. 195 (2006), 763–774.
DOI 10.1016/j.cma.2005.02.010 |
MR 2183622
[32] V. Krištof: An elliptic problem with a nonlinear Newton boundary condition and a double uncertainty. PhD. Thesis, Palacký University, Olomouc, 2004. (Czech)
[33] V. G. Litvinov:
Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics. Birkhäuser-Verlag, Berlin, 2000.
MR 1774123 |
Zbl 0947.49001
[36] T. Roubíček:
Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter, Berlin, 1997.
MR 1458067
[37] M. Tužilová: Reliable solutions of a thermoelastic beam model with uncertain coefficients. PhD. Thesis, Palacký University, Olomouc, 2003. (Czech)
[38] H.-J. Zimmermann:
Fuzzy Set Theory—and Its Applications. Kluwer Academic Publishers, Boston, 2001.
MR 1882395