Previous |  Up |  Next

Article

Keywords:
uncertain input data; the worst-case approach; fuzzy sets
Summary:
An introduction to the worst scenario method is given. We start with an example and a general abstract scheme. An analysis of the method both on the continuous and approximate levels is discussed. We show a possible incorporation of the method into the fuzzy set theory. Finally, we present a survey of applications published during the last decade.
References:
[1] I. Babuška, F. Nobile, R. Tempone: Worst case scenario analysis for elliptic problems with uncertainty. Numer. Math. 101 (2005), 185–219. DOI 10.1007/s00211-005-0601-x | MR 2195342
[2] Y. Ben-Haim: Information-Gap Decision Theory: Decisions Under Severe Uncertainty. Academic Press, San Diego, 2001. MR 1856675 | Zbl 0985.91013
[3] Y. Ben-Haim, I.  Elishakoff: Convex Models of Uncertainties in Applied Mechanics. Elsevier, Amsterdam, 1990.
[4] A. Bernardini: What are the random and fuzzy sets and how to use them for uncertainty modeling in engineering systems?. In: CISM Courses and Lectures No. 388, I. Elishakoff (ed.), Springer-Verlag, Wien, 1999.
[5] B. V. Bulgakov: Fehleranhäufung bei Kreiselapparaten. Ingenieur-Archiv 11 (1940), 461–469. DOI 10.1007/BF02088988
[6] J. Chleboun: Reliable solution for a 1D  quasilinear elliptic equation with uncertain coefficients. J.  Math. Anal. Appl. 234 (1999), 514–528. DOI 10.1006/jmaa.1998.6364 | MR 1689404 | Zbl 0944.35027
[7] J. Chleboun: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: Sensitivity analysis and numerical examples. Nonlinear Anal., Theory Methods Appl. 44 (2001), 375–388. DOI 10.1016/S0362-546X(99)00274-6 | MR 1817101 | Zbl 1002.35041
[8] J.  Chleboun: On fuzzy input data and the worst scenario method. Appl. Math. 48 (2003), 487–496. DOI 10.1023/B:APOM.0000024488.86492.fb | MR 2025958 | Zbl 1099.90081
[9] J. Chleboun, P. Kocna: Isotope selective nondispersive infrared spectrometry can compete with isotope ratio mass spectrometry in cumulative ${}^{13} \text{CO}_2$ breath tests: Assessment of accuracy. Klin. Biochem. Metab. 13 (2005), 92–97.
[10] E. J. Haug, K. K. Choi, V. Komkov: Design Sensitivity Analysis of Structural Systems. Academic Press, Orlando, 1986. MR 0860040
[11] I. Hlaváček: Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function. Appl. Math. 41 (1996), 447–466. MR 1415251
[12] I. Hlaváček: Reliable solutions of elliptic boundary value problems with respect to uncertain data. Proceedings of the  WCNA-96. Nonlin. Anal., Theory Methods Appl. 30 (1997), 3879–3890. DOI 10.1016/S0362-546X(96)00236-2 | MR 1602891
[13] I. Hlaváček: Reliable solution of a quasilinear nonponential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J.  Math. Anal. Appl. 212 (1997), 452–466. DOI 10.1006/jmaa.1997.5518 | MR 1464890
[14] I. Hlaváček: Reliable solution of linear parabolic problems with respect to uncertain coefficients. ZAMM, Z.  Angew. Math. Mech. 79 (1999), 291–301. DOI 10.1002/(SICI)1521-4001(199905)79:5<291::AID-ZAMM291>3.0.CO;2-N | MR 1695286
[15] I. Hlaváček: Reliable solution of an elasto-plastic Reissner-Mindlin beam for the Hencky’s model with uncertain yield function. Appl. Math. 43 (1998), 223–237. DOI 10.1023/A:1023228608356 | MR 1620616
[16] I. Hlaváček: Reliable solution of a Signorini contact problem with friction, considering uncertain data. Numer. Linear Algebra Appl. 6 (1999), 411–434. DOI 10.1002/(SICI)1099-1506(199909)6:6<411::AID-NLA178>3.0.CO;2-W | MR 1731015
[17] I. Hlaváček: Reliable solution of a torsion problem in Hencky plasticity with uncertain yield function. Math. Models Methods Appl. Sci. 11 (2001), 855–865. DOI 10.1142/S0218202501001148 | MR 1842230 | Zbl 1037.74028
[18] I. Hlaváček: Reliable solution of a perfect plastic problem with uncertain stress-strain law and yield function. SIAM J.  Numer. Anal. 39 (2001), 1539–1555. MR 1885706 | Zbl 1014.74015
[19] I. Hlaváček: Worst scenario approach for elastoplasticity with hardening and uncertain input data. ZAMM, Z.  Angew. Math. Mech. 82 (2002), 671–684. DOI 10.1002/1521-4001(200210)82:10<671::AID-ZAMM671>3.0.CO;2-2 | MR 1903014 | Zbl 1099.74505
[20] I. Hlaváček: Reliable solution in strain space of elastoplastic problems with isotropic hardening and uncertain input data. Math. Models Methods Appl. Sci. 12 (2002), 1337–1357. DOI 10.1142/S0218202502002082 | MR 1927028
[21] I. Hlaváček: Post-buckling range of plates in axial compression with uncertain initial imperfections. Appl. Math. 47 (2002), 25–44. DOI 10.1023/A:1021702816894 | MR 1876490
[22] I. Hlaváček: Buckling of a Timoshenko beam on elastic foundation with uncertain input data. IMA J.  Appl. Math. 68 (2003), 185–204. DOI 10.1093/imamat/68.2.185 | MR 1968311 | Zbl 1037.74018
[23] I. Hlaváček: Plate bending problems with uncertain input data. I.  Classical problems. Submitted.
[24] I. Hlaváček, J. Chleboun: Reliable analysis of transverse vibrations of Timoshenko-Mindlin beams with respect to uncertain shear correction factor. Comput. Methods Appl. Mech. Eng. 190 (2000), 903–918. DOI 10.1016/S0045-7825(99)00452-1 | MR 1797723
[25] I. Hlaváček, J. Chleboun, and I. Babuška: Uncertain Input Data Problems and the Worst Scenario Method. Elsevier, Amsterdam, 2004. MR 2285091
[26] I. Hlaváček, J. Lovíšek: Control in obstacle-pseudoplate problems with friction on the boundary. Optimal design and problems with uncertain data. Appl. Math. (Warsaw) 28 (2001), 407–426. DOI 10.4064/am28-4-3 | MR 1873903
[27] I. Hlaváček, M. Křížek, and J. Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189. DOI 10.1006/jmaa.1994.1192 | MR 1275952
[28] I. Hlaváček, J. Lovíšek: Semi-coercive variational inequalities with uncertain input data. Applications to shallow shells. Math. Models Methods Appl. Sci. 15 (2005), 273–299. DOI 10.1142/S0218202505000364 | MR 2120000
[29] I. Hlaváček, J. Nedoma: Reliable solution of a unilateral contact problem with friction and uncertain input data in thermoelasticity. Math. Comput. Simul. 67 (2005), 559–580. DOI 10.1016/j.matcom.2004.08.001 | MR 2111780
[30] I. Hlaváček: Unilateral contact with Coulomb friction and uncertain input data. Numer. Funct. Anal. Optimization 24 (2003), 509–530. DOI 10.1081/NFA-120023866 | MR 1995999 | Zbl 1049.49007
[31] I. Hlaváček, J. Plešek, and D. Gabriel: Validation and sensitivity study of an elastoplastic problem using the worst scenario method. Comput. Methods Appl. Mech. Eng. 195 (2006), 763–774. DOI 10.1016/j.cma.2005.02.010 | MR 2183622
[32] V. Krištof: An elliptic problem with a nonlinear Newton boundary condition and a double uncertainty. PhD. Thesis, Palacký University, Olomouc, 2004. (Czech)
[33] V. G. Litvinov: Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics. Birkhäuser-Verlag, Berlin, 2000. MR 1774123 | Zbl 0947.49001
[34] J. Lovíšek: Reliable solution of parabolic obstacle problems with respect to uncertain data. Appl. Math. 48 (2003), 321–351. DOI 10.1023/B:APOM.0000024480.06960.ea | MR 2008888 | Zbl 1099.35054
[35] L. Nechvátal: Worst scenario method in homogenization. Linear case. Appl. Math. 51 (2006), 263–294. DOI 10.1007/s10492-006-0015-9 | MR 2228666 | Zbl 1164.35317
[36] T. Roubíček: Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter, Berlin, 1997. MR 1458067
[37] M. Tužilová: Reliable solutions of a thermoelastic beam model with uncertain coefficients. PhD. Thesis, Palacký University, Olomouc, 2003. (Czech)
[38] H.-J. Zimmermann: Fuzzy Set Theory—and Its Applications. Kluwer Academic Publishers, Boston, 2001. MR 1882395
Partner of
EuDML logo