Previous |  Up |  Next

Article

Keywords:
unilateral contact; Tresca’s model of friction; mixed variational formulation; Uzawa algorithm
Summary:
A unilateral contact 2D-problem is considered provided one of two elastic bodies can shift in a given direction as a rigid body. Using Lagrange multipliers for both normal and tangential constraints on the contact interface, we introduce a saddle point problem and prove its unique solvability. We discretize the problem by a standard finite element method and prove a convergence of approximations. We propose a numerical realization on the basis of an auxiliary “bolted” problem and the algorithm of Uzawa.
References:
[1] J. P. Aubin: Approximation of Elliptic Boundary Value Problems. Wiley, New York, 1972. MR 0478662 | Zbl 0248.65063
[2] L.  Baillet, T.  Sassi: Méthodes d’éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C. R.  Acad. Sci. Paris, Ser. I 334 (2002), 917–922. DOI 10.1016/S1631-073X(02)02356-7 | MR 1909940
[3] P.  Coorevits, P.  Hild, K.  Lhalouani, and T.  Sassi: Mixed finite element methods for unilateral problems: Convergence analysis and numerical studies. Math. Comput. 71 (2002), 1–25. DOI 10.1090/S0025-5718-01-01318-7 | MR 1862986
[4] J. Daněk, I.  Hlaváček, and J.  Nedoma: Domain decomposition for generalized unilateral semi-coercive contact problem with friction in elasticity. Math. Comput. Simul. 68 (2005), 271–300. DOI 10.1016/j.matcom.2004.12.007 | MR 2138931
[5] I.  Ekeland, R. Temam: Analyse Convexe et Problèmes Variationnels. Dunod, Paris, 1974. MR 0463993
[6] M. Fiedler: Special Matrices and Their Applications in Numerical Mathematics. Martinus Nijhoff Publ. (member of Kluwer), Dordrecht-Boston, 1986. MR 1105955 | Zbl 0677.65019
[7] M.  Frémond: Dual formulations for potentials and complementary energies. In: MAFELAP, J.  R. Whiteman (ed.), Academic Press, London, 1973.
[8] J.  Haslinger, I.  Hlaváček: Approximation of the Signorini problem with friction by a mixed finite element method. J.  Math. Anal. Appl. 86 (1982), 99–122. DOI 10.1016/0022-247X(82)90257-8 | MR 0649858
[9] J.  Haslinger, I.  Hlaváček, and J.  Nečas: Numerical methods for unilateral problems in solid mechanics. In: Handbook of Numerical Analysis, vol. IV, P. G. Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1996, pp. 313–485. MR 1422506
[10] J.  Haslinger, T.  Sassi: Mixed finite element approximation of 3D  contact problems with given friction: error analysis and numerical realization. M2AN, Math. Model. Numer. Anal. 38 (2004), 563–578. DOI 10.1051/m2an:2004026 | MR 2075760
[11] J. Haslinger, R.  Kučera, and Z.  Dostál: An algorithm for numerical realization of 3D  contact problems with Coulomb friction. J.  Comput. Appl. Math. 164–165 (2004), 387–408. MR 2056889
[12] I.  Hlaváček, J.  Haslinger, J.  Nečas, and J. Lovíšek: Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York, 1988. MR 0952855
[13] I.  Hlaváček: Finite element analysis of a static contact problem with Coulomb friction. Appl. Math. 45 (2000), 357–379. DOI 10.1023/A:1022220711369 | MR 1777018
[14] I.  Hlaváček, J.  Nedoma: On a solution of a generalized semi-coercive contact problem in thermo-elasticity. Math. Comput. Simul. 60 (2002), 1–17. DOI 10.1016/S0378-4754(01)00433-5 | MR 1916897
[15] V.  Janovský, P.  Procházka: Contact problem for two elastic bodies, Parts I–III. Apl. Mat. 25 (1980), 87–109, 110–136, 137–146. MR 0560325
[16] J.  Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981. MR 0600655
[17] T.  Sassi: Nonconforming mixed variational formulation of the Signorini problem with a given friction. Preprint of MAPLY No. 365, 2003. http://maply,univ-lyon1.fr/publis/.
Partner of
EuDML logo