[2] L. Baillet, T. Sassi:
Méthodes d’éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C. R. Acad. Sci. Paris, Ser. I 334 (2002), 917–922.
DOI 10.1016/S1631-073X(02)02356-7 |
MR 1909940
[3] P. Coorevits, P. Hild, K. Lhalouani, and T. Sassi:
Mixed finite element methods for unilateral problems: Convergence analysis and numerical studies. Math. Comput. 71 (2002), 1–25.
DOI 10.1090/S0025-5718-01-01318-7 |
MR 1862986
[4] J. Daněk, I. Hlaváček, and J. Nedoma:
Domain decomposition for generalized unilateral semi-coercive contact problem with friction in elasticity. Math. Comput. Simul. 68 (2005), 271–300.
DOI 10.1016/j.matcom.2004.12.007 |
MR 2138931
[5] I. Ekeland, R. Temam:
Analyse Convexe et Problèmes Variationnels. Dunod, Paris, 1974.
MR 0463993
[6] M. Fiedler:
Special Matrices and Their Applications in Numerical Mathematics. Martinus Nijhoff Publ. (member of Kluwer), Dordrecht-Boston, 1986.
MR 1105955 |
Zbl 0677.65019
[7] M. Frémond: Dual formulations for potentials and complementary energies. In: MAFELAP, J. R. Whiteman (ed.), Academic Press, London, 1973.
[9] J. Haslinger, I. Hlaváček, and J. Nečas:
Numerical methods for unilateral problems in solid mechanics. In: Handbook of Numerical Analysis, vol. IV, P. G. Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1996, pp. 313–485.
MR 1422506
[10] J. Haslinger, T. Sassi:
Mixed finite element approximation of 3D contact problems with given friction: error analysis and numerical realization. M2AN, Math. Model. Numer. Anal. 38 (2004), 563–578.
DOI 10.1051/m2an:2004026 |
MR 2075760
[11] J. Haslinger, R. Kučera, and Z. Dostál:
An algorithm for numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164–165 (2004), 387–408.
MR 2056889
[12] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek:
Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York, 1988.
MR 0952855
[15] V. Janovský, P. Procházka:
Contact problem for two elastic bodies, Parts I–III. Apl. Mat. 25 (1980), 87–109, 110–136, 137–146.
MR 0560325
[16] J. Nečas, I. Hlaváček:
Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
MR 0600655
[17] T. Sassi:
Nonconforming mixed variational formulation of the Signorini problem with a given friction. Preprint of MAPLY No. 365, 2003.
http://maply,univ-lyon1.fr/publis/.