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Abstract. A unilateral contact 2D-problem is considered provided one of two elastic
bodies can shift in a given direction as a rigid body. Using Lagrange multipliers for both
normal and tangential constraints on the contact interface, we introduce a saddle point
problem and prove its unique solvability. We discretize the problem by a standard finite
element method and prove a convergence of approximations. We propose a numerical
realization on the basis of an auxiliary “bolted” problem and the algorithm of Uzawa.
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Introduction

Unilateral contact of elastic bodies has been modelled in terms of displacements
by many authors (see e.g. [9], [14], [16], [12] and the literature therein). The weak

variational formulation leads to elliptic variational inequalities. If a given friction
(Tresca’s model) has to be considered, a non-differentiable term appears in the in-

equality, making the approximate solution more complicated. A remedy can be
a mixed variational formulation of the problem which employs Lagrange multipli-

ers ([8], [9], [10], [11], [12], [17], [2]).

Piecewise linear finite elements are used for the approximation of displacements, as
a rule. Lagrange multipliers, which can be interpreted as components of the contact

The research was supported by the grant 201/04/1503 of the Grant Agency of the Czech
Republic, the grant FT-TA/087 of the Ministry of Industry and Trade of the Czech
Republic and by the Academy of Sciences of the Czech Republic, Institutional Research
Plan No. AVOZ 10190503.
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stress vector, are approximated either by piecewise constant functions ([8], [9], [10],

[11]), or by piecewise linear functions as in [2].

The present paper seems to be the first attempt to analyse the mixed variational

formulation of semi-coercive unilateral contact problems with given friction. Indeed,
any of the papers mentioned above deals with either a primal formulation (i.e., in

terms of displacements) for semi-coercive problems ([9], [14], [12]) or mixed formu-
lation for a coercive problem ([8], [10], [11], [12], [17], [2]). The only analysis of

the mixed finite element method of semi-coercive problems was presented in [15] for
a contact with zero friction. In [3] numerical experiments were displayed for a re-

lated semi-coercive problem, though the theory was restricted to coercive frictionless
unilateral contact problems.

Section 1 of the present paper is devoted to a primal variational formulation of

a semi-coercive unilateral contact problem with given friction, following [14]. We
deduce sufficient conditions for the existence and uniqueness of a weak solution. A

mixed variational formulation of the same contact problem is introduced in Section 2
in the form of a saddle point problem.

In Section 3 we propose and analyse a discretized saddle point problem. Standard

spaces of linear shape functions on regular triangulations are used for displacements.
Traces of these spaces on the contact interface are employed for the first Lagrange

multiplier (normal contact force), following [2], [3], whereas piecewise constant ap-
proximations are used for the second multiplier (tangential contact force), as in [8],

[9], [10], [11], [17].

Proofs of existence and uniqueness of a saddle point are given on both the continu-
ous and the discretized level. Section 4 contains a convergence analysis for the mesh

sizes tending to zero. We prove that the approximate displacements converge in the
H1-norm, the approximate tangential Lagrange multipliers converge in L∞ weakly

star, whereas the approximate normal multipliers converge in a functional sense. We
do not use any additional assumption about a regularity of the exact solution.

To establish an effective numerical realization of the discretized saddle point prob-

lem, we introduce an auxiliary contact problem in Section 5, assuming that the two
bodies under consideration are “bolted” together at a suitable nodal point of the

interface (see [7], [15]). Then we propose and analyse an algorithm of Uzawa for
the “bolted” saddle point problem. We show in Section 6 that the iterations of the

algorithm can be constructed for every single elastic body separately, as in [15].
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1. Primal variational formulation

Let us consider two elastic bodies occupying bounded domains Ω1 and Ω2 of
� 2

with Lipschitz boundaries ∂ΩM , M = 1, 2. We assume the stress-strain law

τM
ij = cMijkmε

M
km, i, j, k,m = 1, 2,

where

εM
km =

1
2
(∂vM

k /∂xm + ∂vM
m /∂xk),

vM
k are components of the displacement vector,

cMijkm ∈ L∞(ΩM ), cMijkm = cMkmij = cMjikm,

cMijkmξijξkm > c0ξijξij

holds for a.a. x ∈ ΩM and for all symmetric matrices (ξij). Henceforth we use the
summation convention (any repeated subscript implies summation within {1, 2}).
Let

Tn(v) = τM
ij (v)nM

i nM
j , Tt(v) = τM

ij (v)nM
i tMj

denote the normal and tangential components of the stress vector TM
i (v) =

τM
ij (v)nM

j .

Let the body Ω1 be fixed on a closed part Γu ⊂ ∂Ω1, where measΓu > 0. The
body Ω2 has bilateral contact conditions vin

2
i ≡ v · n2 = 0, Tt(v) = 0 on a (closed)

part Γ0 ⊂ ∂Ω2 with measΓ0 > 0. Let Γ0 be contained in straight lines parallel with
the x2-axis. We denote by

Γc = ∂Ω1 ∩ ∂Ω2

the common part of the boundaries and assume that measΓc > 0 and Γc ∩ Γu = ∅.
Let surface loads P 1, P 2 be prescribed on the remaining parts of ∂Ω1 and ∂Ω2,

respectively.

On Γc we consider a unilateral contact with given friction (i.e. Tresca’s model of

friction) as follows:

[vn] 6 0, Tn(v) 6 0, [vn]Tn(v) = 0,

|Tt(v)| 6 g, |Tt(v)| < g ⇒ [vt] = 0,

|Tt(v)| = g ⇒ there exists Θ > 0 such that [vt] = −ΘTt(v),

where

[vn] = v1 · n1 + v2 · n2, [vt] = v1 · t1 + v2 · t2,
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nM and tM , M = 1, 2, are unit outward normal and tangential unit vectors, respec-
tively; g is a given slip limit.
Next, we introduce a variational formulation of the equilibrium problem, i.e.,

∂τM
ij (v)/∂xj + FM

i = 0 in ΩM , M = 1, 2,

TM
i (v) = PM

i on ΓM
p , M = 1, 2,

where Γ1
p = ∂Ω1 \ (Γu ∪ Γc), Γ2

p = ∂Ω2 \ (Γ0 ∪ Γc) and i = 1, 2.
We define the spaces of virtual displacements:

V 1 = {v ∈ [H1(Ω1)]2 : v = 0 on Γu},
V 2 = {v ∈ [H1(Ω2)]2 : v · n2 = 0 on Γ0},�

= V 1 × V 2,

the bilinear forms

aM (u, v) =
∫

Ω

cMijkmε
M
ij (u)εM

km(v) dx, M = 1, 2,

a(u, v) = a1(u, v) + a2(u, v)

and the functionals

S(v) =
∑

M=1,2

SM (v) =
∑

M=1,2

(∫

ΩM

FM
i vM

i dx+
∫

ΓM
p

PM
i vM

i ds
)
,

j(v) =
∫

Γc

g|[vt]| ds.

Let us define the following set of admissible displacements:

�
= {v ∈ � : [vn] 6 0 on Γc}.

We say that u ∈ � is a weak solution of the primal problem, if
(1.1) a(u, v − u) + j(v) − j(u) > S(v − u) ∀ v ∈ � .
Let us introduce the subspace of rigid bodies displacements

R = {v ∈ [H1(Ω1)]2 × [H1(Ω2)]2 : |v|′ = 0},

where

(1.2) |v|′ =
( ∑

M=1,2

∫

ΩM

εM
ij (v)εM

ij (v) dx
)1/2

.
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By assumptions on Γu and Γ0, we infer

(1.3) R ∩ � = {% = (%1, %2) : %1 = (0, 0), %2 = (0, a), a ∈ � 1}.

Obviously, we have

(1.4) R ∩ � = {% = (%1, %2) : %1 = (0, 0), %2 = (0, a), a > 0}

provided

(1.5) n1
2 > 0 holds on Γc.

Throughout the paper, we assume that

FM
i ∈ L2(ΩM ), PM

i ∈ L2(ΓM
p ), g ∈ L∞(Γc), g > 0.

Theorem 1.1. Assume that

(1.6) S(y) < j(y) ∀ y ∈ R ∩ � \ {0}.
Then there exists a weak solution of the primal problem. If

(1.7) |S(w)| > j(w) ∀w ∈ R ∩ � \ {0},
there exists at most one solution.
�������
	

is based on a slight generalization of Theorem 1.4 of [16, Chapter 13].

(See also [14, Theorem 4.1].) �

Corollary 1.1. By the above assumptions on Γu, Γ0 and by (1.5) we infer that

(1.6) is satisfied if and only if

V2
2 ≡

∫

Ω2
F 2

2 dx+
∫

Γ2
p

P 2
2 ds <

∫

Γc

g|t22| ds.

Condition (1.7) is satisfied if and only if

|V2
2 | >

∫

Γc

g|t22| ds.

As a consequence, there exists a unique solution, if

V2
2 < −

∫

Γc

g|t22| ds.

�
���������
1.1. Domain decomposition method and piecewise linear triangular

finite elements have been applied to the solution of the primal problem in [4].
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2. Mixed variational formulation

The main goal of computational mechanics in contact problems is the displacement

field and the stress field. In particular, the normal and tangential components of the
stress vector on the contact are of great importance. To this end, a mixed variational

formulation of the contact problem may serve, which has both the displacements and
the stress vector components on the contact involved as the pivot variables. At the

same time, the mixed formulation transforms the non-differentiable term j(v) into a
differentiable functional by means of Lagrange multipliers. A mixed finite element

analysis of a coercive Signorini problem with given friction was presented in [8], [9],
[17], [10], [11], [2].

In the present paper, we analyse a suitable variant of the mixed finite element
method for a semi-coercive unilateral contact problem of two elastic bodies, consid-
ered in Section 1.

First, we have to introduce some auxiliary definitions and lemmas.

Definition 2.1. Let us define a mapping δ :
� → L2(Γc)× L2(Γc) by

δv = ([vn], [vt]).

We denote � = W ×W = δ(
�
) so that [vn] ∈ W , [vt] ∈ W , δv ∈ � . To define the

norm in � , we introduce

(2.1) |||v||| =
[
(|v|′)2 +

2∑

M=1

‖vM‖2
0,ΩM

]1/2

(see (1.2) for the seminorm |v|′) and

(2.2) ‖ϕ‖ � = inf
v∈ � ,δv=ϕ

|||v|||.
�
���������

2.1. If the intersection Γc = ∂Ω1 ∩ ∂Ω2 is sufficiently smooth, then
� = H1/2(Γc)×H1/2(Γc). If the arcs of Γc are polygonal, these spaces are not equal,

but only isomorphic.

Definition 2.2. Let us define the space

H(div, Q) = {(σij)2i,j=1 ∈ [L2(Ω1)]4 × [L2(Ω2)]4 : σij = σji,

div σM = (σM
1j,j , σ

M
2j,j) ∈ [L2(ΩM )]2, M = 1, 2}

with the scalar product

(2.3) (σ, τ)H(div,Q) =
2∑

M=1

[(σM
ij , τ

M
ij )0,ΩM + (σM

ij,j , τ
M
ik,k)0,ΩM ]

where σM
ij,j = ∂σM

ij /∂xj (and Q = Ω1 ∪ Ω2).
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�
���������
2.2. The space H(div, Q) with the scalar product (2.3) is a Hilbert

space.

Lemma 2.1 (Green’s formula). Let � ′ denote the dual space with respect to � .
There exists a unique mapping � = (Tn, Tt) ∈ L(H(div, Q), � ′ ) such that

2∑

M=1

[(τM
ij , εij(vM ))0,ΩM + (τM

ij,j , v
M
i )0,ΩM ] = 〈 � (τ), δv〉(2.4)

≡ 〈Tn, [vn]〉+ 〈Tt, [vt]〉 ∀ τ ∈ H(div, Q), ∀ v ∈ � .
Moreover, � maps H(div, Q) onto � ′ .
�������
	

is a slight generalization of those in [1] or [8]. �

Lemma 2.2. Given any µ ∈ � ′ , let u(µ) denote the solution of the following
auxiliary problem: find u ≡ u(µ) ∈ � such that

(2.5)
2∑

M=1

[(εij(uM ), εij(vM ))0,ΩM + (uM
i , vM

i )0,ΩM ] = 〈µ, δv〉 ∀ v ∈ � .

Then

(2.6) ‖µ‖ � ′ = |||u(µ)|||.

�������
	
. Let τ ∈ H(div, Q) be such that µ = � (τ). By Lemma 2.1 we have

∑

M

[(τM
ij , εij(vM ))0,ΩM + (τM

ij,j , v
M
i )0,ΩM ] = 〈µ, δv〉 ∀ v ∈ �

so that
〈µ, ϕ〉 6 ‖τ‖H(div,Q)|||v|||

holds for all v ∈ � such that δv = ϕ ∈ � .
Making use of the definition (2.2), we obtain

(2.7) ‖µ‖ � ′ 6 ‖τ‖H(div,Q) ∀ τ ∈ H(div, Q), � (τ) = µ.

Let u ≡ u(µ) be the solution of problem (2.5). Then

σ ≡ ε(u(µ)) ∈ H(div, Q),

‖σ‖H(div,Q) =
( 2∑

M=1

[(εM
ij (u), εM

ij (u))0,ΩM + (uM
i , uM

i )0,ΩM ]
)1/2

= |||u(µ)|||(2.8)
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follows from Green’s formula (2.4) for v ∈ [C∞0 (Ω1)]2×[C∞0 (Ω2)]2 and (2.5). Inserting
v := u(µ) into (2.5), we infer

〈µ, δu(µ)〉 = |||u(µ)|||2 = ‖σ‖H(div,Q)|||u(µ)||| > ‖σ‖H(div,Q)‖δu(µ)‖ � ,
using also (2.2). As a consequence,

(2.9) ‖µ‖ � ′ > ‖σ‖H(div,Q).

The assertion (2.6) follows from (2.7), (2.8) and (2.9), since µ = � (σ). �

For a suitable mixed variational formulation of the contact problem under consid-
eration we shall need the set of Lagrange multipliersM = Mn ×Mt, where

Mn = {µn ∈W ′ : µn > 0 on Γc},
Mt = {µt ∈ L2(Γc) : |µt| 6 1 a.e. on supp g, µt = 0 on Γc \ supp g}.

Let us define
b(µ, v) = 〈µn, [vn]〉+ (gµt, [vt])0,Γc

and the Lagrangian

L(ν, µ) =
1
2
a(v, v)− S(v) + b(µ, v).

Instead of the primal problem (1.1) we will solve the following saddle point prob-

lem: find a couple (w, λ) such that w ∈ � , λ ∈M and

(2.10) L(w, µ) 6 L(w, λ) 6 L(v, λ)

holds for all µ ∈M and v ∈ � .
Theorem 2.1. Let assumptions (1.6), (1.7) be fulfilled. Moreover, let −Tn(u) ∈

Mn hold for the solution u of the primal problem, Γc ∩ Γu = ∅ and Γc ∩ Γ0 = ∅.
Then there exists a unique saddle point (w, λ) ∈ � ×M, w coincides with u and

λn = −Tn(u), gλt = −Tt(u).

�������
	
. An equivalent formulation of (2.10) is represented by the following

problem: find (w, λ) ∈ � ×M such that

a(w, v) + b(λ, v) = S(v) ∀ v ∈ � ,(2.11)

b(µ− λ,w) 6 0 ∀µ ∈M.(2.12)
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Let us observe that Green’s formula from Lemma 2.1 can be extended to cover the

whole boundaries ∂Ω1 ∪ ∂Ω2, by replacing
�
by [H1(Ω1)]2 × [H1(Ω2)]2, as follows:

2∑

M=1

[(τM
ij , εij(vM ))0,ΩM + (τM

ij,j , v
M
i )0,ΩM ](2.13)

=
2∑

M=1

[〈TM
n (τ), vM

n 〉∂ΩM + 〈TM
t (τ), vM

t 〉∂ΩM ]

∀ τ = H(div, Q), ∀ v ∈ [H1(Ω1)]2 × [H1(Ω2)]2,

where

TM
n (τ) ∈W ′(∂ΩM ), TM

t (τ) ∈W ′(∂ΩM ), vM
n , vM

t ∈ W (∂ΩM ).

Equation (2.11) can be rewritten as

2∑

M=1

(τM
ij (w), εij(vM ))0,ΩM + 〈λn, [vn]〉+ (gλt, [vt])0,Γc

=
2∑

M=1

[(FM
i , vM

i )0,ΩM + (PM
i , vM

i )0,ΓM
p

].

Setting τ = τ(w) in (2.13), we obtain

a(w, v) = −
2∑

M=1

(τM
ij,j(w), vM

i )0,ΩM(2.14)

+
2∑

M=1

[〈TM
n (w), vM

n 〉∂ΩM + 〈TM
t (w), vM

t 〉∂ΩM ] ∀ v ∈ � .

Let us insert (2.14) into (2.11). Choosing vM ∈ [C∞0 (ΩM )]2, we obtain

−τM
ij,j(w) = FM

i in ΩM , M = 1, 2.

If we choose v ∈ �
such that v1

n = −v2
n, v

1
t = v2

t = 0 on Γc and supp v1
n ⊂ Γc,

we obtain 〈T 1
n(w) − T 2

n(w), v1
n〉 = 0, so that T 1

n(w) = T 2
n(w) follows. We infer

T 1
t (w) = T 2

t (w) likewise.
If we choose v ∈ � such that vM = 0 on ΓM

p and v2
t = 0 on Γ0, we obtain

(2.15) λn = −Tn(w), gλt = −Tt(w).
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Choosing µt = λt and µn = 0, µn = 2λn in the inequality (2.12), we arrive at

(2.16) 〈λn, [wn]〉 = 0, 〈µn, [wn]〉 6 0 ∀µn ∈ Mn.

As a consequence, [wn] 6 0 on Γc, so that w ∈ �
. The choice µn = λn in (2.12)

yields

(gµt, [wt])0,Γc 6 (gλt, [wt])0,Γc ∀µt ∈ Mt.

Choosing µt = sign[wt], we obtain

(2.17) j(w) = (g, |[wt]|)0,Γc 6 (gλt, [wt])0,Γc .

Using (2.16), (2.17), (2.11) and the definitions ofMn,Mt, we arrive at

a(w, v − w) + j(v) − j(w) > S(v − w) ∀ v ∈ � .

As a consequence, w is a solution of the primal problem and since this solution is
unique, w = u. Using also (2.15), we conclude that there exists at most one saddle

point (w, λ).
Conversely, let u ∈ � be the solution of the primal problem and −Tn(u) ∈ Mn.

Then u ∈ � , (−Tn(u),−Tt(u)) ∈ Mn ×Mt. Indeed, following the arguments of [8],
we infer

|Tt(u)| 6 g a.e. on Γc.

Let us verify conditions (2.11), (2.12). By the formula (2.14), where w is replaced
by u, we obtain

(2.18) −τM
ij,j(u) = FM

i in ΩM , M = 1, 2,

setting v = u± ϕ, ϕM ∈ [C∞0 (ΩM )]2. Choosing v = u± z, where z1 = 0 on Γu ∪ Γc

and z2 = 0 on Γ0 ∪ Γc and using (2.18), we arrive at

(2.19) TM (u) = PM on ΓM
p , M = 1, 2.

The choice v = u± z such that z1 = 0, z2
n = 0 on Γ0, z2 = 0 on Γc, yields

(2.20) T 2
t (u) = 0 on Γ0.

Finally, inserting (2.18), (2.19) and (2.20) into (2.13), we infer that condition (2.11)
is satisfied.

34



Next, let us verify condition (2.12) for λn = −Tn(u) and gλt = −Tt(u). Making
use of the variational inequality (1.1), formula (2.13) (with u instead of w), (2.18),
(2.19) and (2.20), we arrive at

(2.21) 〈Tn(u), [vn]− [un]〉+ 〈Tt(u), [vt]− [ut]〉+ j(v) − j(u) > 0 for all v ∈ � .
Let {ψk}, k →∞, be a sequence of functions such that ψk ∈ � , [ψk

n] = 0 on Γc and

[ψk
t ] → −[ut] in L1(Γc) as k →∞.

Then vk = u+ ψk ∈ � and
〈Tt(u), [ψk

t ]〉+ (g, |[ut + ψk
t ]| − |[ut]|)0,Γc > 0.

Passing to the limit with k →∞, we are led to

−〈Tt(u), [ut]〉 − (g, |[ut]|)0,Γc > 0.

Since

(2.22) Tt(u)[ut] + g|[ut]| > 0

follows from the bound |Tt(u)| 6 g on Γc, we infer

(2.23) Tt(u)[ut] + g|[ut]| = 0 a.e. on Γc.

Next, we may write

b(µ− λ, u) = 〈µn − λn, [un]〉+ 〈g(µt − λt), [ut])0,Γc

= 〈µn, [un]〉+ (gµt + Tt(u), [ut])0,Γc , ∀µ ∈ M,

since
〈Tn(u), [un]〉 = 0

follows from (2.21) and (2.23) by setting v = 0 and v = 2u.
The first term is nonpositive by the definitions ofMn and

�
, and

(gµt, [ut])0,Γc 6 (g, |[ut]|)0,Γc = (−Tt(u), [ut])0,Γc ∀µt ∈ Mt

follows from (2.23). As a consequence, condition (2.12) is satisfied and (u, (λn, λt)),
where λn = −Tn(u), gλt = −Tt(u), is a saddle point. �
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3. Finite element approximation

In the present section we propose and analyse a variant of mixed finite element

approximation, based on the saddle point formulation (2.10). We use the standard
spaces of linear elements on regular triangulations Th = T 1

h ∪ T 2
h of polygonal do-

mains Ω1 and Ω2.
We assume that Γc is a straight line segment. If a frictionless problem is considered,

we need not restrict ourselves to straight segments (see [3] and [15]). We define spaces

� M
h = {vh ∈ [C(Ω

M
)]2 ∩ V M : vh|κ ∈ [P1(κ)]2 ∀κ ∈ T M

h },

where κ denotes any triangle of T M
h , and

�
h =

� 1
h ×

� 2
h.

Assume that the triangulation Th is compatible with the end-points of Γu, Γ0 and

Γc. Moreover, let the nodes si of T 1
h and T 2

h coincide on Γc and form a uniform
partition

Nh = (s0, s1, . . . , sm), m = m(h)

of Γc. We define

Whn = {ψh : there exists vh ∈
�

h such that ψh = [vhn]}

and assume that gh ∈Whn is a non-negative approximation of the slip limit g.

Instead of the setMn we define

Mhn = {µhn : µhn is a real function defined on Nh such that(3.1)

µhn(si) > 0, i = 0, 1, . . . ,m}.

Let {TH} be a partition of Γc, whose nodes will be denoted correspondingly by zi

(cf. [2], [17]):

z0 = s0, zm+1 = sm, zi+1 =
1
2
(si + si+1), i = 0, 1, . . . ,m− 1.

We introduce

LH = {µH ∈ L∞(Γc) : µH |(zi,zi+1) ∈ P0(zi, zi+1), 0 6 i 6 m}

and

(3.2) MHt = {µH ∈ LH : |µH | 6 1, µH = 0 on Γc \ supp gh}.

36



Finally, we define �
hH = Mhn ×MHt.

Instead of problem (2.10) we will solve the following saddle point problem: find a

pair (uh, λhH) ∈ � h ×
�

hH such that

(3.3) LhH(uh, µhH) 6 LhH (uh, λhH ) 6 LhH(vh, λhH) ∀ (vh, µhH) ∈ � h ×
�

hH ,

where

LhH (vh, µhH) =
1
2
a(vh, vh)− S(vh) + bhH(µhH , vh),(3.4)

bhH(µhH , vh) = {µhn, [vhn]}h + (ghµHt, [vht])0,Γc

and

(3.5) {µhn, [vhn]}h =
m∑

i=0

MiHiVi,

where

µhn =
m∑

i=0

Miψi, [vhn] =
m∑

i=0

Viψi,

Mi = µhn(si) and {ψ0, ψ1, . . . , ψm} denotes the standard 1D-basis of Whn; H0 =
Hm = 1

2h0, Hi = h0 for i = 1, 2, . . . ,m − 1, h0 = si+1 − si. That is, {·, ·}h denotes

the numerical integration by the trapezoidal rule on the partition Th ∩ Γc.
The last term in (3.4) is piecewise quadratic and can be evaluated by Simpson’s

rule exactly.
To verify the existence of a saddle point (3.3), we can employ the following abstract

theorem.

Proposition 3.1. Let V and Y be two real Hilbert spaces, A ⊂ V and B ⊂ Y

nonempty, closed and convex subsets. Assume that

∀µ ∈ B, v → L(v, µ) is convex, weakly lower semicontinuous,

∀ v ∈ A, µ→ L(v, µ) is concave, weakly upper semicontinuous,

sup
µ∈B

L(v, µ) → +∞ as v ∈ A, ‖v‖V →∞;(3.6)

there exists v0 ∈ A such that

(3.7) L(v0, µ) → −∞ as µ ∈ B, ‖µ‖Y →∞.

Then there exists a saddle point of L(v, µ) on A×B.
�������
	

. See [5, Proposition VI.2.4 and Remark 2.4], or [9, Theorem 3.9] and its
counterpart. �
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Next, let us define

(3.8) Kh = {vh ∈
�

h : {µhn, [vhn]}h 6 0 ∀µhn ∈Mhn}.

From definitions (3.1), (3.5) and (3.8), we infer that

(3.9) Kh =
�

h ∩
�
.

Lemma 3.1. Let µH ∈ LH , µH = 0 on Γc \ supp gh and

(3.10) (µHgh, [vht])0,Γc = 0 ∀ vh ∈
�

h.

Then

(3.11) µH = 0 on Γc.

�������
	
. Let Gi and Mi, i = 0, 1, . . . ,m, denote the nodal values of gh ∈ Whn

and [µH ], respectively, on Nh. Then the proof of (3.11) leads to a linear system for
unknownsMi, with a tridiagonal matrix A ≡ {aij}, such that

aii = 14Gi + 2Gi−1 + 2Gi+1, i = 1, . . . ,m− 1,

ai−1,i = Gi−1 + 2Gi, i = 1, . . . ,m,

ai,i+1 = 2Gi + Gi+1, i = 1, . . . ,m− 1,

a00 = 7G0 + 2G1,

amm = 7Gm + 2Gm−1.

As a consequence, the matrix A is diagonally dominant. By [6, Theorem 5.17] the

matrix A is regular and every of its principal submatrices is regular, as well. This
implies that (3.11) holds. �

Theorem 3.1. Let assumptions (1.6), (1.7) be fulfilled. Then there exists a
unique solution of the saddle point problem (3.3).

�������
	
. (i) Existence. Using Proposition 3.1, we set

A =
�

h, V =
�

h, B =
�

hH , Y =
� m+1 × L2(Γc).

It is readily seen that it suffices to verify conditions (3.6) and (3.7).
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To verify (3.6), we first consider vh ∈ Kh. Then

sup
µhH∈ � hH

bhH(µhH , vh) = sup
µHt∈MHt

(ghµHt, [vht])0,Γc(3.12)

=
m∑

i=0

∣∣∣∣
∫ zi+1

zi

gh[vht] ds
∣∣∣∣ ≡ jH(vh).

Second, we consider vh 6∈ Kh. Then there exists µ0
hn ∈Mhn such that

{µ0
hn, [vhn]}h > 0.

Setting µhn = tµ0
hn, t→ +∞, we infer that

sup
µhn∈Mhn

{µhn, [vhn]}h = +∞.

On the other hand,

(3.13) |(ghµHt, [vht])0,Γc | 6
∫

Γc

gh|[vht]| ds < +∞

holds for any µHt ∈MHt, so that

(3.14) sup
µhH∈ � hH

bhH(µhH , vh) = +∞

follows for vh 6∈ Kh.
As a consequence of (3.12) and (3.13), we have

(3.15) sup
µhH∈ � hH

LhH(vh, µhH) =

{
JH(vh) if vh ∈ Kh,

+∞ if vh ∈
�

h \Kh,

where
JH(vh) =

1
2
a(vh, vh)− S(vh) + jH(vh).

By assumption (1.6) the functional JH(·) is coercive on Kh. Indeed,

(3.16) JH(vh) → +∞ as vh ∈ Kh and ‖vh‖ → ∞

can be deduced by a slight modification of the proof of Theorem 4.1 in [14], where
we replace j(v) by jH(vh) and use the fact that

(3.17) jH (yh) = j(yh) for yh ∈ R ∩ � h.
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Then (3.6) follows from (3.14) and (3.15). To verify condition (3.7), we can find

v0 ∈ Kh such that

max
s∈Γc

[v0n](s) = ω < 0.

Then we may write

−{µhn, [v0n]}h > −h0ω

m∑

i=0

|Mi|

so that

(3.18) {µhn, [v0n]}h → −∞ as ‖M‖m+1 = ‖µhn‖m+1 →∞.

As a consequence of (3.18) and (3.13),

LhH(v0, µhH) → −∞ as ‖µhH‖Y →∞, µhH ∈
�

hH ,

so that condition (3.7) is satisfied. By Proposition 3.1, there exists at least one saddle
point (3.3).

(ii) Uniqueness. First, we will show that the component uh of the saddle point
coincides with the solution uh ∈ Kh of the variational inequality

(3.19) a(uh, vh − uh) + jH(vh)− jH(uh) > S(vh − uh) ∀ vh ∈ Kh.

Indeed, by virtue of (3.15) we have

LhH(uh, λhH) = min
vh∈ � h

sup
µhH∈ � hH

LhH(vh, µhH) = min
vh∈Kh

JH(vh).

The latter minimization problem is equivalent with the variational inequality (3.19).

Let uh and uh be two solutions of (3.19). Then

a(uh, uh − uh) + jH(uh)− jH (uh) > S(uh − uh),

a(uh, uh − uh) + jH(uh)− jH (uh) > S(uh − uh),

so that

c0(|uh − uh|′)2 6 a(uh − uh, uh − uh) 6 0

and w : uh − uh ∈ R ∩ � h follows. Since inequality (3.19) implies

uh = arg min
vh∈Kh

JH(vh),

40



we have

(3.20) JH(uh) = JH(uh) ⇒ |S(w)| = |jH(uh + w) − jH(uh)| 6 jH(w) = j(w)

using also (3.17).
On the other hand, assumption (1.7) implies

(3.21) |S(w)| > j(w) ∀w ∈ R ∩ � h \ {0},

since R∩ � h = R∩ � . As a consequence, (3.20) and (3.21) imply w = 0, so that the
first component of the saddle point is unique.

Next, let λhH and λhH be two second components of the saddle point. Since

a(uh, vh) + bhH(λhH , vh) = S(vh) ∀ vh ∈
�

h

and a parallel condition for λhH holds, we obtain

bhH(λhH − λhH , vh) = 0 ∀ vh ∈
�

h.

Denoting µhH = λhH − λhH , we have µhH ≡ (µhn, µHt) and

{µhn, [vhn]}h + (ghµHt, [vht])0,Γc = 0 ∀ vh ∈
�

h.

Choosing [vht] = 0 and [vhn] = µhn, we obtain µhn = 0. Let [vhn] = 0 and using
Lemma 3.1 we conclude µHt = 0. �

4. Convergence analysis

We are going to prove convergence of saddle-point components uh, λhn and λHt

as the mesh sizes h and H (H = h0 6 h) tend to zero. To this end, we shall need

the following lemma.

Lemma 4.1. Let assumptions (1.6), (1.7) be fulfilled. Then the sequence {uh},
h→ 0+, is bounded in

�
.

�������
	
. From the proof of uniqueness in Theorem 3.1 we know that uh ∈ Kh is

a solution of inequality (3.19). Setting vh = 0 and vh = 2uh, we obtain

(4.1) JH(uh) +
1
2
a(uh, uh) = a(uh, uh) + jH(uh)− S(uh) = 0.

Assume that ‖uh‖ → ∞ as h → 0+. Using (3.16), we infer JH(uh) → +∞. We
arrive at a contradiction with (4.1) so that {uh} must be bounded in

�
. �
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Theorem 4.1. Let the assumptions of Theorem 2.1 be fulfilled. In addition to
that, let there be only a finite number of points Γp∩Γu, Γp∩Γ0, and let supp g consist
of a finite number of segments Gp, p 6 p, such that the endpoints of Gp coincide

with some nodes of Th ∩ Γc for all Th under consideration. Let g ∈ H1(Gp), p 6 p.

Assume that gh is the Lagrange linear interpolate of g on Th ∩ Γc.

Then

uh → u in
�
,(4.2)

λHt ⇀ λt weakly* in L∞(Γc),(4.3)

λhn ⇀ λn weakly* in H−1/2(Γc)(4.4)

as h→ 0+, where (u, λ), λ ≡ (λn, λt) is the saddle point of L(v, µ) on
� ×M, i.e., the

solution of problem (2.10).

�������
	
. By virtue of Lemma 4.1 and the definition of MHt, one can find

subsequences of {uh} and {λHt} (we will denote them by the same symbols) such
that

uh ⇀ u∗ weakly in
�
,(4.5)

λHt ⇀ λ∗t weakly* in L∞(Γc),(4.6)

where u∗ and λ∗t are some elements of
�
and L∞(Γc), respectively.

Let us show that λ∗t ∈ Mt. Since

‖λHt‖0,∞ 6 1 for all H → 0+,(4.7)

‖λ∗t ‖0,∞ 6 lim inf
H→0

‖λHt‖0,∞ 6 1

follows from (4.6).

It is readily seen that supp gh = supp g. We observe that

λHt = 0 on Γc \ OH(supp g),

where

OH(supp g) =
{
s ∈ Γc : dist(s, supp g) <

1
2
H

}
.

Assume that |λ∗t | > 0 on a set T0 such that T0 ⊂ Γc \ supp g and measT0 > 0. Then
(4.6) implies ∫

T0

[(λ∗t )
2 − λHtλ

∗
t ] ds→ 0 as H → 0+.
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On the other hand,

∫

T0

λHtλ
∗
t ds =

∫

T0∩OH(supp g)

λHtλ
∗
t ds→ 0

and we arrive at a contradiction. As a consequence, λ∗t = 0 a.e. on Γc \ supp g.
Combining this result with (4.7), we conclude that λ∗t ∈Mt.

Next, we show that u∗ is a solution of the primal problem (1.1). Since uh ∈ Kh ⊂
�

by (3.9) and
�
is weakly closed, u∗ ∈ � follows.

From (3.3) we infer

(4.8) bhH(µhH − λhH , uh) 6 0 ∀µhH ∈
�

hH .

Setting µHt = λHt, µhn = 0 and µhn = 2λhn, we obtain

{λhn, [uhn]}h = 0,(4.9)

{µhn, [uhn]}h 6 0 ∀µhH ∈Mhn.(4.10)

Since Kh ⊂
�

h, (3.3) yields

(4.11) LhH(uh, λhH) 6 LhH(vh, λhH) ∀ vh ∈ Kh.

If vh ∈ Kh, then (4.9) and the definition of Mhn imply

bhH(λhH , vh − uh) = {λhn, [vhn]}h + (ghλHt, [vht]− [uht])0,Γc(4.12)

6 (ghλHt, [vht]− [uht])0,Γc .

From (4.11) and (4.12) we infer

(4.13) a(uh, vh − uh) + (ghλHt, [vht]− [uht])0,Γc − S(vh − uh) > 0 ∀ vh ∈ Kh.

The set �
0 =

� ∩ ([C∞(Ω
1
)]2 × [C∞(Ω

2
)]2)

is dense in
�
by virtue of the assumptions of Theorem 4.1. (For a proof we refer

to [12, § 2.3.3, Lemma 3.2] and [8, Remark 3.2].) For any v ∈ � we may therefore
find a sequence {vh}, h→ 0+, such that

(4.14) vh ∈ Kh, vh → v in
�
.
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Passing to the limit in (4.13) and using (4.5), (4.6), compactness of the trace

mapping and (4.14), we obtain

(4.15) a(u∗, v) + (gλ∗t , [vt]− [u∗t ])0,Γc − S(v − u∗) > a(u∗, u∗).

Making use of (4.8) with µhn = λhn, we infer

(4.16) (ghµHt, [uht])0,Γc 6 (ghλHt, [uht])0,Γc ∀µHt ∈MHt.

Since MHt is dense in Mt with respect to the L2(Γc)-norm, we can construct a
sequence {µHt} such that µHt ∈MHt and

µHt → sign[u∗t ] in L
2(supp g) as H → 0+.

Then using (4.5), (4.6), we infer from (4.16) that

j(u∗) = (g, |[u∗t ]|)0,Γc = (g sign[u∗t ], [u
∗
t ])0,Γc(4.17)

6 (gλ∗t , [u
∗
t ])0,Γc .

Here we have employed also the well-known estimate for the Lagrange linear inter-

polate of g:
‖gh − g‖0,Γc 6 Ch0

∑

p6p

‖g‖1,Gp.

On the other hand,

(4.18) (gλ∗t , [vt])0,Γc 6 (g, |[vt]|)0,Γc = j(v).

Combining (4.15), (4.17) and (4.18), we arrive at

a(u∗, v − u∗) + j(v) − S(v − u∗) > j(u∗) ∀ v ∈ � .

As a consequence, u∗ is a solution of the primal problem. By Theorem 1.1 the

solution is unique, so that u∗ = u follows. Moreover, the whole sequence {uh} tends
weakly to u in

�
.

Next, we prove the strong convergence in
�
. By virtue of inequality (3.19), we

have

JH(uh) 6 JH(vh) ∀ vh ∈ Kh,

where

JH(v) = J0(v) + jH(v), J0(v) =
1
2
a(v, v)− S(v).
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Employing Taylor’s formula, we obtain

J0(vh) + jH(vh) > J0(u) + J ′0(u, uh − u) +
1
2
a(uh − u, uh − u) + jH(uh),

so that

(4.19)
1
2
c0(|uh − u|′)2 6 J0(vh)− J0(u)− J ′0(u, uh − u) + jH(vh)− jH(uh).

We also observe that

(4.20) |jH (vh)− jH(uh)| 6 C‖[vht]− [uht]‖0,Γc .

Let us choose vh ∈ Kh such that vh → u in
�
and use the continuity of J0, weak

convergence of {uh}, (4.20) and compactness of the trace mapping to deduce that

(4.21) |uh − u|′ → 0 as h→ 0+

follows from (4.19). The weak convergence uh ⇀ u in
�
yields that

(4.22) ‖uM
h − uM‖0,ΩM → 0 as h→ 0+, M = 1, 2,

by the Rellich theorem. From coerciveness of strains (i.e., 1st Korn’s inequality) we

obtain

(4.23) (|uh − u|′)2 +
2∑

M=1

‖uM
h − uM‖2

0,ΩM > C‖uh − u‖2

(see [16, Chapter 6, Theorem 3.4]).

Combining (4.21), (4.22) and (4.23), we infer the strong convergence uh → u in
�

as h→ 0+.

Let us recall (4.15) with u∗ = u, i.e.,

a(u, v − u) + (gλ∗t , [vt]− [ut])0,Γc > S(v − u) ∀ v ∈ � .
Using Green’s formula, (2.13) and (2.14), we deduce that gλ∗t = −Tt(u) by an argu-
ment similar to that in the proof of Theorem 2.1. As a consequence, λ∗t = λt and
the whole sequence {λHt} tends to λt weakly* in L∞(Γc).
To verify (4.4), we first show that the sequence {λhn} is bounded in H−1/2(Γc).
By Lemma 2.2 the norm of µ ≡ (λhn, 0) ∈ [H−1/2(Γc)]2 is equal to the norm

|||z(λh)|||, where z(λh) ∈ � is the solution of the problem
(4.24) [z(λh), v] = 〈λhn, [vn]〉 ∀ v ∈ � ,
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where

[z, v] =
∑

M=1,2

((εij(zM ), εij(vM ))0,ΩM + (zM
i , vM

i )0,ΩM )

and |||z||| = [z, z]1/2.

Instead of problem (4.24) we will solve the following approximate problem: find
zh(λh) ∈ � h such that

(4.25) [zh(λh), vh] = {λhn, [vhn]}h ∀ vh ∈
�

h.

Making use of definition (3.3) and of the boundedness of {uh} and {λHt}, we may
write

(4.26) {λhn, [vhn]}h = S(vh)− a(uh, vh)− (ghλHt, [vht])0,Γc 6 C‖vh‖.

Inserting vh := zh(λh) into (4.25), (4.26) and using the coerciveness of strains, we
obtain

|||zh(λh)|||2 6 C‖zh(λh)‖ 6 C̃|||zh(λh)|||,

so that

(4.27) |||zh(λh)||| 6 C̃ ∀h→ 0+.

From (4.24) and (4.25) we infer

(4.28) [z(λh)− zh(λh), vh] = 0 ∀ vh ∈
�

h,

provided we set

(4.29) 〈λhn, [vhn]〉 := {λhn, [vhn]}h.

Then (4.28) implies that

|||z(λh)− zh(λh)||| = inf
vh∈ � h

|||z(λh)− vh|||.

Obviously, the infimum tends to zero as h → 0+. Using this and (4.27), we are led
to the estimate

|||z(λh)||| 6 C̃ + 1 for h < h1,

so that

‖λhn‖−1/2,Γc
= |||z(λh)||| 6 C̃ + 1 ∀h < h1.
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Since the space H1/2(Γc) is reflexive and separable, its dual H−1/2(Γc) is separable
as well.

There exist a subsequence of {λhn} (we will denote it by the same symbol) and
λ∗ ∈ H−1/2(Γc) such that

(4.30) λhn ⇀ λ∗ weakly* in H−1/2(Γc) as h→ 0+.

Let v ∈ � be an arbitrary element. There exists a sequence {vh}, h → 0+, such
that vh ∈

�
h and vh → v in

�
. Let us consider the equation in (4.26) and pass to

the limit with h→ 0+. Using (4.2), (4.3), (4.29), the convergence

[vhn] → [vn] in H1/2(Γc)

and (4.30), we arrive at

〈λ∗, [vn]〉 = S(v)− a(u, v)− (gλt, [vt])0,Γc .

Comparing this equation with (2.11), we infer

〈λ∗ − λn, [vn]〉 = 0 ∀ v ∈ � ,

so that λ∗ = λn follows. Since the saddle point is unique by Theorem 2.1, the whole
sequence {λhn} tends to λn weakly* in H−1/2(Γc). �

�
���������
4.1. If Γc consists of more than one straight segment Si

(
Γc =

⋃
i6I

Si

)
,

we have to replace H−1/2(Γc) by
∏
i6I

H−1/2(Si).

5. An algorithm of Uzawa type

We will propose an iterative algorithm for the search of the saddle point (uh, λhH),
i.e., for the solution of problem (3.3). To establish an effective realization of such an

algorithm, we will use a method of Uzawa, combined with the idea of an artificial
bolt (see [7] and [15]). The latter idea is based on the following observation.
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Lemma 5.1. Let assumptions (1.5), (1.6) and (1.7) be fulfilled. Then there exists
at least one node sα ∈ Nh such that

[uhn](sα) = 0.

�������
	
. By (3.9) we have uh ∈ Kh ⊂

�
, so that [uhn] 6 0 holds on Γc. Let us

assume that

(5.1) u := max
s∈Γc

[uhn](s) < 0.

Setting

ũh = uh + y, y = (y1, y2), y1 = (0, 0), y2 = (0, u),

we observe that
y ∈ R ∩ � h.

Using (1.5), we obtain

[ũhn] = [uhn] + un2
2 6 u(1 + n2

2) 6 0 on Γc,

so that ũh ∈ Kh.

By (3.19) we may write

(5.2) a(uh, vh − uh) + jH(vh)− jH(uh) > S(vh − uh) ∀ vh ∈ Kh.

We also have the estimate (3.20), i.e.,

(5.3) |jH(uh + y)− jH(uh)| 6 j(y).

Since −y ∈ R ∩ � \ {0}, assumptions (1.6) and (1.7) imply
(5.4) S(−y) < −j(−y) = −j(y).

Combining (5.2) with (5.3) and (5.4), we obtain

a(ũh, vh − ũh) + jH(vh)− jH(ũh)

> a(uh, vh − uh) + jH(vh)− jH(uh)− j(y)

> S(vh − uh) + S(−y) = S(vh − ũh).

Consequently, ũh is another solution of inequality (3.19). In the proof of Theorem 3.1

we concluded that (3.19) has a unique solution, so that we are led to a contradiction
with (5.1). �
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Next, we introduce an auxiliary “bolted” saddle point problem. We choose a suit-

able nodal point sα ∈ Nh and assume that the bodies Ω1 and Ω2 have a “bolted joint”
at sα. This “bolted” problem is coercive so that we overcome the difficulties con-
nected with semi-definiteness of the stiffness matrix corresponding to problem (3.3).

The “bolted” problem will be solved by a method of Uzawa. If the resulting normal
contact force at the “bolt” is positive (i.e., tension), we replace sα by a neighbouring

nodal point and repeat the algorithm. If the normal contact force is non-positive,
we stop the procedure.

Definition 5.1. Let us define the following spaces and forms:

� α
h = {vh ∈

�
h : [vhn](sα) = 0},

Mα
hn = {µhn : µhn is defined on Nh \ {sα}, µhn(si) > 0 ∀ i 6= α}�

α
hH = Mα

hn ×MHt,

bαhH(µhH , vh) = {µhn, [vhn]}α
h + (ghµHt, [vht])0,Γc

where

{µhn, [vhn]}α
h =

m∑

i6=α

MiHiVi.

Let (uα
h , λ

α
hH) ∈ � α

h ×
�

α
hH be such that

a(uα
h , vh) + bαhH(λα

hH , vh) = S(vh) ∀ vh ∈
� α

h ,(5.5)

bαhH(µhH − λα
hH , u

α
h) 6 0 ∀µhH ∈

�
α
hH .(5.6)

Then we say that (uα
h , λ

α
hH ) is a solution of the “bolted” saddle point problem.

Theorem 5.1. Let (1.5) be fulfilled. Then there exists a unique solution of
problem (5.5)–(5.6).

�������
	
. We use [9, Theorem 3.8] to prove the existence of a saddle point

(uα
h , λ

α
hH) ∈ � α

h ×
�

α
hH of the functional Lα

hH (vh, µhH). In the theorem mentioned
above we set

V =
�

h, A =
� α

h , Y =
� m × L2(Γc), B =

�
α
hH .

Choosing µhH = 0 ∈
�

α
hH and vh ∈

� α
h such that ‖vh‖ → ∞, we first infer that

(5.7) Lα
hH(vh, 0) =

1
2
a(vh, vh)− S(vh) → +∞,
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since

(5.8) a(vh, vh) > c‖vh‖2 ∀ vh ∈
� α

h .

Indeed, (5.8) follows from assumption (1.5) since the latter implies that

� α
h ∩R = {0}.

Second, we can find v0 ∈
� α

h such that [v0t] = 0 on Γc and

V0
i ≡ [v0n](si) 6 ω < 0 ∀ si ∈ Nh \ {sα}.

Then

(5.9) Lα
hH(v0, µhH) =

1
2
a(v0, v0)− S(v0) + {µhn, [v0n]}α

h → −∞

as µhn ∈Mα
hn, ‖µhn‖ → ∞, since

{µhn, [v0n]}α
h =

∑

i6=α

MiHiV0
i 6

∑

i6=α

|Mi|H0ω,

where H0 = min
i6=α

Hi > 0 andMi = µhn(si).

To prove uniqueness, let us assume that (u, λ) and (u, λ) are two solutions of
problem (5.5)–(5.6). Let us denote

w = u− u, µ = λ− λ, µ ≡ (µn, µt).

From (5.5) we deduce (dropping the subscripts and superscripts)

(5.10) a(w,w) + b(µ,w) = 0

and (5.6) yields

(5.11) b(µ,w) > 0.

Using (5.8), (5.10) and (5.11), we arrive at

c‖w‖2 6 a(w,w) 6 0,

so that u = u.
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From (5.5) we infer that

b(µ, v) = 0 ∀ v ∈ � α
h .

Choosing v ∈ � α
h such that [vt] = 0 and [vn] = µn, we obtain

{µn, µn}α
h = 0

so that µn = 0 follows.
Now, let us choose v ∈ � α

h such that [vn] = 0 and use Lemma 3.1 to conclude that
µt = 0. �

In what follows, we define iterations for k = 0, 1, . . ., of the algorithm of Uzawa. We
will identify the functions λk

n ∈Mα
hn with vectorsMk ∈ � m (with componentsMk

i ,
i 6= α, 0 6 i 6 m); for λk

t ∈MHt we introduce vectors Λk ∈ � m+1 such that

λk
t =

m∑

i=0

Λk
i χi,

where χi denotes the characteristic function of the interval (zi, zi+1).
We also write

[uk
n] =

∑

i6=α

Uk
i ψi, T k

i =
∫

Γc

χigh[uk
t ] ds, 0 6 i 6 m.

In every iteration step k = 0, 1, . . . we solve the following problem: find uk ∈ � α
h

such that

(5.12) a(uk, v) + bαhH(λk, v) = S(v) ∀ v ∈ � α
h .

We setM0
i = 0 for all i 6= α andM0

α = V2
2/(Hαn

2
2),

Λ0
i = 0, 0 6 i 6 m, %k ∈

� 1 , %k > 0,

Mk+1
i = (Mk

i + %kUk
i )+ ∀ i 6= α,(5.13)

Λk+1
i = π(Λk

i + %kT k
i ) ∀ i = 0, 1, . . . ,m.(5.14)

In addition to that we defineMk+1
α by the following equilibrium condition:

(5.15)

(
Mk+1

α Hα +
∑

i6=α

Mk+1
i Hi

)
n2

2 + t22

m∑

i=0

∫

Γc

Λk+1
i χigh ds = V2

2 .
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Here π(·) denotes the one-dimensional projection of � 1 onto the interval [−1, 1],
i.e.,

π(x) =





1 if x > 1,

x if |x| < 1,

−1 if x 6 −1

and V2
2 has been defined in Corollary 1.1.

Theorem 5.2. Assume that %k belong to a suitable interval [%min, %max], %min > 0.
Then algorithm (5.12)–(5.14) converges in the first component, i.e.

uk → uα
h as k →∞.

�������
	
. Let us denote

λα
hn = {Mα

i }i6=α, [uα
hn] =

∑

i6=α

Uiψi.

Condition (5.6) implies that the vector U is a normal to the closed convex set Mα
hn.

Indeed,

(5.16) {M−Mα, %U}α
h 6 0 ∀M ∈Mα

hn, ∀ % ∈
� 1 , % > 0,

so that Mα is a projection of (Mα + %U) in
� m onto the set Mα

hn with respect
to the scalar product {X,Y }α

h . It is easy to see that the projection is determined
componentwise by the non-negative parts , i.e.

(5.17) Mα
i = (Mα

i + %Ui)+ ∀ i 6= α.

Second, (5.6) implies that

(5.18) (gh(µt − λα
Ht), [u

α
ht])0,Γc 6 0 ∀µt ∈MHt.

Inserting

µt =
m∑

i=0

Mt
iχi, λα

Ht =
m∑

i=0

Λα
i χi

into (5.18), we obtain

(5.19) 0 >
( m∑

i=0

(Mt
i − Λα

i )χi, gh[uα
ht]

)

0,Γc

=
m∑

i=0

(Mt
i − Λα

i )Ti,
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where

(5.20) Ti =
∫

Γc

χigh[uα
ht] ds, 0 6 i 6 m.

From (5.19) we infer that the vector T is a normal to the closed convex set M̂Ht of

“nodal parameters” of MHt with respect to the standard scalar product in
� m+1 .

As a consequence, we may write

(5.21) Λα
i = π(Λα

i + % Ti), ∀ % ∈ � 1 , % > 0, i = 0, 1, . . . ,m.

Using the norm

‖X‖h ≡ ({X,X}α
h)1/2,

from (5.13) and (5.17) we infer

(5.22) ‖Mk+1 −Mα‖h 6 ‖Mk −Mα + %k(Uk − U)‖h.

In what follows, we denote

rk
n = Mk −Mα and rk

t = Λk − Λα.

Then

(5.23) ‖rk+1
n ‖h 6 ‖rk

n + %k (Uk − U)‖h.

From (5.14) and (5.21) we infer

(5.24) ‖rk+1
t ‖m+1 6 ‖rk

t + %k(T k − T )‖m+1.

If we set vh = uk−uα
h in (5.5) and drop the superscripts “α” and the subscripts “h,H”

for the time being, we obtain

(5.25) a(u, uk − u) + b(λ, uk − u) = S(uk − u).

Setting v = u− uk in (5.12), we get

(5.26) a(uk, u− uk) + b(λk, u− uk) = S(u− uk).

The sum of (5.25) and (5.26) becomes

a(u− uk, uk − u) + b(λ− λk, uk − u) = 0.
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By virtue of (5.8) we may therefore write

c‖uk − u‖2 6 a(uk − u, uk − u) = b(λ− λk, uk − u)(5.27)

= − {rk
n,Uk − U}α

h − (rk
t )T (T k − T ).

Inequalities (5.23) and (5.24) yield

‖rk+1
n ‖2

h 6 ‖rk
n‖2

h + 2%k{rk
n,Uk − U}α

h + %2
k‖Uk − U‖2

h,(5.28)

‖rk+1
t ‖2

m+1 6 ‖rk
t ‖2

m+1 + 2%k(rk
t )T (T k − T ) + %2

k‖T k − T ‖2
m+1.(5.29)

Let us introduce the following norm of the pairs r ≡ (rn, rt):

|||r|||2 = ‖rn‖2
h + ‖rt‖2

m+1.

Using (5.27), (5.28) and (5.29), we arrive at

|||rk+1|||2 6 |||rk |||2 + 2%k(−c‖uk − u‖2) + %2
k(‖Uk − U‖2

h + ‖T k − T ‖2
m+1).

On the other hand,

‖Uk − U‖2
h + ‖T k − T ‖2

m+1(5.30)

6 C(‖[uk
n]− [un]‖2

0,Γc
+ ‖[uk

t ]− [ut]‖2
0,Γc

) 6 C̃‖uk − u‖2.

As a consequence, we have

(5.31) |||rk+1|||2 + (2c%k − C̃%2
k)‖uk − u‖2 6 |||rk |||2.

There exist an interval [%min, %max] and a positive constant β such that 0 < %min <

%max and

%k ∈ [%min, %max] ⇒ 2c%k − C̃%2
k > β.

Then
|||rk+1|||2 + β‖uk − u‖2 6 |||rk |||2

follows. The sequence |||rk ||| is non-increasing, so that

|||rk ||| → l, 0 6 l < +∞,

and

‖uk − u‖ → 0 as k →∞.

�
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Theorem 5.3. If %k belong to a suitable interval [%min, %max], %min > 0, then
algorithm (5.12)–(5.14) converges in the multipliers (Mk,Λk), i.e.,

Mk →Mα and Λk → Λα as k →∞.

�������
	
. Using (5.31), we observe that

‖Mk −Mα‖h 6 |||rk ||| 6 |||r0|||

so that

(5.32) ‖Mk‖h 6 ‖Mα‖h + |||r0|||

holds for all k = 0, 1, . . ..
By virtue of (5.14) we have

|Λk
i | 6 1 ∀ k.

Since {Mk}, {Λk} and {%k} are bounded sequences, we can find subsequences (and
denote them by the same symbols) such that

(5.33) Mk →M, Λk → Λ and %k → % as k →∞.

From (5.13) and (5.14) we infer

(5.34) {Mk + %k Uk −Mk+1,M−Mk+1}α
h 6 0 ∀M ∈Mα

hn

and

(5.35) (Λk + %kT k − Λk+1)T (Λ− Λk+1) 6 0 ∀Λ ∈ M̂Ht,

respectively. We also have

Uk → U and T k → T as k →∞

by (5.30) and Theorem 5.2.

Passing to the limit in (5.34), (5.35), we obtain

{[M+ %U ]−M,M−M}α
h 6 0 ∀M ∈Mα

hn,(5.36)

([Λ + % T ]− Λ)T (Λ− Λ) 6 0 ∀Λ ∈ M̂Ht.(5.37)

In addition to that, (5.12), (5.33) and Theorem 5.2 imply

(5.38) a(u, v) + b(λ, v) = S(v) ∀ v ∈ � α
h ,

where λ ≡ (λn, λt) corresponds to (M,Λ).
Summarizing (5.36), (5.37) and (5.38), we infer that (u, λ) is a solution of prob-

lem (5.5)–(5.6). Since this problem is uniquely solvable by Theorem 5.1, λ = λα
hH

and the whole sequences {Mk} and {Λk} tend toMα and Λα, respectively. �
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6. Solution of problem (5.12)

The process of Uzawa requires to solve the linear problem (5.12) for any iteration

step k = 0, 1, . . . on the set Ω1 ∪ Ω2. We will propose an effective algorithm for the
solution, employing some ideas of [15, Part III].

First, we decompose problem (5.12) to two separate problems P1 and P2 solved
on the domains Ω1 and Ω2, respectively. The decomposition is made possible by

the introduction of the “contact force in the bolt”Mk+1
α by the equilibrium condi-

tion (5.15).

We define the following problem:

find u1 ∈ V 1
h such that(P1)

a1(u1, v) = S1(v) − bhH(λk , v) ∀ v ∈ V 1
h ,(6.1)

where Mk
α is inserted into the complete form {λk

n, v
1
n}h. On Ω2 we will first solve

the following auxiliary problem:

find ω ∈ V 2
h such that (ω · n2)(sα) = 0 and(P2)

a2(ω, v) = S2(v)− bhH(λk , v) ∀ v ∈ V 2
h , (v · n2)(sα) = 0,(6.2)

whereMk
α is again inserted.

Second, we find a rigid displacement y ∈ R ∩ � h such that

(6.3) (u1 · n1 + (ω + y) · n2)(sα) = 0

and define u2 = ω + y.

Finally, we set uk = (u1, u2). It is readily seen that (u1, ω + y) is a solution of
problem (5.12). Indeed, we infer

a(uk, v) = S(v)− bhH(λk, v) ∀ v ∈ � α
h

and

bhH(λk , v) = bαhH(λk , v),

due to the condition [vn](sα) = 0 for v ∈ � α
h .

Solutions of problems P1 and P2 can be constructed as follows. We define u1 =
u1s + u1bk, where

u1s ∈ V 1
h ,(6.4)

a1(u1s, v) = S1(v) ∀ v ∈ V 1
h ;

u1bk ∈ V 1
h ,(6.5)

a1(u1bk, v) = −bhH(λk , v) ∀ v ∈ V 1
h .
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Likewise, we define

ω = ωs + ωbk,

ωs ∈ V 2
h , (ωs · n2)(sα) = 0,(6.6)

a2(ωs, v) = S2(v) ∀ v ∈ V 2
h , (v · n2)(sα) = 0;

ωbk ∈ V 2
h , (ωbk · n2)(sα) = 0,(6.7)

a2(ωbk, v) = −bhH(λk , v) ∀ v ∈ V 2
h , (v · n2)(sα) = 0.

Since u1s and ωs do not depend on λk, they can be computed once only and remain

unchanged during iterations. For problems (6.4) and (6.6) a domain decomposition
(e.g. FETI) can be employed.

For an effective solution of problems (6.5) and (6.7) a pre-elimination can be

recommended. To this end, we renumerate the nodal points of Th in such a way that
the last numbers of the numbering belong to the nodes of the contact line Γc. Then we
can eliminate components of the solution vector which do not belong to Γc by partial

Gauss elimination. For a detailed procedure we refer to [12, p. 203]. In this way the
number of unknowns is reduced and the computing time saved is considerable.
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