Previous |  Up |  Next

Article

Keywords:
nonlocal operator; large eddy simulation; Smagorinsky model; dynamic Germano model
Summary:
In the note we are concerned with higher regularity and uniqueness of solutions to the stationary problem arising from the large eddy simulation of turbulent flows. The system of equations contains a nonlocal nonlinear term, which prevents straightforward application of a difference quotients method. The existence of weak solutions was shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model, ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604 and P. Gwiazda, A. Świerczewska: Large eddy simulation turbulence model with Young measures, Appl. Math. Lett. 18 (2005), 923–929.
References:
[1] R. A. Adams: Sobolev Spaces. Academic Press, New York-San Francisco-London, 1975. MR 0450957 | Zbl 0314.46030
[2] H. Brezis: Analyse Fonctionelle. Théorie et Applications. Dunod, Paris, 1994. (French)
[3] L. C. Evans: Partial Differential Equations. AMS, Providence, 1998. MR 1625845 | Zbl 0902.35002
[4] M. Germano, U. Piomelli, P. Moin, and W. Cabot: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids  A 3 (1991), 1760–1765. DOI 10.1063/1.857955
[5] M. Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser-Verlag, Basel, 1993. MR 1239172 | Zbl 0786.35001
[6] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0473443
[7] P. Gwiazda, A.  Świerczewska: Large eddy simulation turbulence model with Young measures. Appl. Math. Lett. 18 (2005), 923–929. DOI 10.1016/j.aml.2004.07.035 | MR 2152305
[8] L. Hörmander: The Analysis of Linear Partial Differential Operators  I. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[9] V.  John: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 2004. MR 2018955
[10] P. Kaplický, J. Málek, and J. Stará: Full regularity of weak solutions to a class of nonlinear fluids in two dimensions—stationary, periodic problem. Commentat. Math. Univ. Carolinae 38 (1997), 681–695.
[11] D. K. Lilly: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids  A 4 (1992), 633–635. DOI 10.1063/1.858280
[12] J. Málek, J. Nečas, M. Rokyta, and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, London, 1996. MR 1409366
[13] P. Sagaut: Large Eddy Simulation for Incompressible Flows. Springer-Verlag, Berlin, 2001. MR 1815221 | Zbl 0964.76002
[14] A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model. ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604. DOI 10.1002/zamm.200410200 | MR 2156086
Partner of
EuDML logo