[2] H. Brezis: Analyse Fonctionelle. Théorie et Applications. Dunod, Paris, 1994. (French)
[4] M. Germano, U. Piomelli, P. Moin, and W. Cabot:
A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (1991), 1760–1765.
DOI 10.1063/1.857955
[5] M. Giaquinta:
Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser-Verlag, Basel, 1993.
MR 1239172 |
Zbl 0786.35001
[6] D. Gilbarg, N. S. Trudinger:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-New York, 1977.
MR 0473443
[8] L. Hörmander: The Analysis of Linear Partial Differential Operators I. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[9] V. John:
Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 2004.
MR 2018955
[10] P. Kaplický, J. Málek, and J. Stará: Full regularity of weak solutions to a class of nonlinear fluids in two dimensions—stationary, periodic problem. Commentat. Math. Univ. Carolinae 38 (1997), 681–695.
[11] D. K. Lilly:
A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (1992), 633–635.
DOI 10.1063/1.858280
[12] J. Málek, J. Nečas, M. Rokyta, and M. Růžička:
Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, London, 1996.
MR 1409366
[13] P. Sagaut:
Large Eddy Simulation for Incompressible Flows. Springer-Verlag, Berlin, 2001.
MR 1815221 |
Zbl 0964.76002
[14] A. Świerczewska:
Large eddy simulation. Existence of stationary solutions to the dynamical model. ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604.
DOI 10.1002/zamm.200410200 |
MR 2156086