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Abstract. In the note we are concerned with higher regularity and uniqueness of solu-
tions to the stationary problem arising from the large eddy simulation of turbulent flows.
The system of equations contains a nonlocal nonlinear term, which prevents straightfor-
ward application of a difference quotients method. The existence of weak solutions was
shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the
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1. Introduction

The equations considered are a dynamical version of the classical Smagorinsky
model

v · ∇v − div(c(y)|Dv|Dv) − ν∆v +∇q = f in Ω,(1)

div v = 0 in Ω,

where Ω = (0, L)3, L > 0, is a cube in
� 3 , ν is a positive constant,Dv = 1

2 (∇v+∇T v),

c is a continuous function of y = (ṽ, ṽv, D̃v,
�
|Dv|Dv) and by ˜ we mean a convolution,

which will be specified later. Given the external force f we are looking for the

velocity v : Ω −→ � 3 and the pressure q : Ω −→ �
. The above equations arise

from large eddy simulation of turbulent flows. The idea of this approach consists
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in decomposing the velocity into a part containing large flow structures and a part

consisting of small scales. These scales are separated by averaging the velocity, the
so-called filtering, namely convoluting it with an appropriate function—filter. The
equations for filtered terms are derived from the Navier-Stokes equations. By adding

an additional constitutive relation, which models the contribution of small scales into
the flow, we may obtain the classical Smagorinsky model, i.e. system (1) with c ≡ cs,

cs > 0 being a constant. The improvement of the Smagorinsky model consisting in
finding the so-called Smagorinsky constant cs dynamically is the Germano model,

cf. [4], [11]. System (1) is a stationary case of a slight generalization of the Germano
model. For more details on derivation of the model we refer to [9], [13]. We will

equip (1) with periodic boundary conditions (i = 1, 2, 3)

v(x + Lei) = v(x),(2)

q(x + Lei) = q(x),

where {ei}3
i=1 is the canonical basis of

� 3 .

In Section 2 we introduce the notation, collect the properties of a turbulent term
c(y)|Dv|Dv and recall the existence result from [14]. Some conjectures concern-

ing higher regularity are also formulated. Section 3 consists of the proof of W 2,2-
regularity of solutions for more regular data and function c than in the existence

result. We will prove the following theorem.

Theorem 1.1. Suppose that f ∈ L2(Ω) and c ∈ W 1,∞(
� 3× � 3× � 3× � 3) satisfies

conditions (C1)–(C2) below. Then every weak solution v ∈ V to problem (1), (2)
satisfies

v ∈ W 2,2(Ω).

The fact of higher regularity enables us to show the uniqueness for small data,

namely

Theorem 1.2. Let f ∈ L2(Ω) with L2-norm sufficiently small. Let the function

c ∈ W 1,∞(
� 3 × � 3 × � 3 × � 3) satisfy conditions (C1)–(C2) below. Then the weak

solution v to (1), (2) is unique.

The proof of this theorem is contained in Section 4. All the notation for the

function spaces used in the above theorems appears in Section 2.
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2. Preliminaries

2.1. Notation
By � 3 we mean the set of 3 × 3 symmetric matrices. Let us introduce spaces

of divergence free periodic functions. By C∞
per(

� 3 ) we denote the set of functions
from C∞(

� 3 ), which are periodic in each ith direction with a period L > 0, i.e., u(x+
Lei) = u(x), i = 1, 2, 3. Further let

V ≡
{

u : u ∈ C∞
per(

� 3 ), div u = 0,

∫

Ω

u dx = 0
}

and let V be the closure of V with respect to the norm ‖u‖V =
(∫

Ω
|∇u|3 dx

)1/3
.

Its dual space will be denoted by V ′. For the dual pairing between V and V ′ the
notation 〈·, ·〉 will be used. All Lp- and W 1,p- functions are meant to be periodic in

each ith direction with period L and with vanishing mean on Ω. We will often use
b(u, v, w) to denote the trilinear form

b(u, v, w) :=
∫

Ω

uj
∂vi

∂xj
wi dx.

Note that b is well defined, continuous on V × V × V and b(u, v, v) = 0, b(u, v, w) =
−b(u, w, v).

2.2. Filtering and properties of the turbulent term
We choose as filter a non-negative C∞

per(
� 3 )-function ϕ with a period L > 0 such

that
∫
Ω

ϕ dx = 1, where Ω = (0, L)3. Filtering of v, denoted by ṽ, is now equivalent

to the standard convolution (over the whole
� 3 ). The filtered values will be defined

for all x ∈ � 3 by

ṽ(x) =
∫

Ω

v(y)ϕδ(x − y) dy, ϕδ(y) =
1
δ3

ϕ
(y

δ

)
, y ∈ � 3

where δ is a positive, constant filter width. We recall the facts concerning convolu-

tions which we will use later (see also [8], [2], [1]).
(i) Let f ∈ Lp(

� n ), g ∈ Lq(
� n ). If 1 6 p, q 6 ∞ and 1/r = 1/p + 1/q − 1,

1 6 r 6 ∞ then f ∗ g exists for a.a. x ∈ � n , f ∗ g ∈ Lr(
� n ) and

‖f ∗ g‖Lr 6 ‖f‖Lp‖g‖Lq .

(ii) ∇αṽ(x) =
∫
Ω ∇αϕ(x−y)v(y) dy, where∇αv = ∂|α|v/∂xα1

1 ∂xα2
2 ∂xα3

3 with multi-
index α = (α1, α2, α3), |α| = α1 + α2 + α3.
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By the turbulent term we mean the operator c(y)|Dv|Dv with the notation for

nonlocal (filtered) variables y = (ṽ, ṽv, D̃v,
�
|Dv|Dv). The properties of the operator c

are the following:

(C1) c :
� 3 × � 3× � 3× � 3 −→ �

is a continuous function with respect to y;

(C2) c satisfies the condition

(3) 0 < α 6 c(y) 6 β < ∞

for all y ∈ (
� 3 × � 3× � 3× � 3).

For later use we assemble also the properties of the operator η 7→ |η|η for η ∈ � 3.

There exists a scalar function U ∈ C2( � 3), U(η) = 1
3 |η|3 such that for all η, ξ ∈ � 3,

i, j = 1, 2, 3

(4)
∂U(η)
∂ηij

= |η|ηij

and

(5)
∂2U(η)

∂ηmn∂ηrs
ξmnξrs > |η||ξ|2.

Moreover, |η|η is strongly monotone, i.e. there exists a positive constantK1 such that

(6) (|η|ηij − |ξ|ξij) · (ηij − ξij) > K1|η − ξ|3

for all η, ξ ∈ � 3.

2.3. Existence of weak solutions

We start with recalling the definition of weak solutions.

Definition 2.1. A function v ∈ V is a weak solution to problem (1), (2) if the
equation

(7)
∫

Ω

(v · ∇v · ϕ + c(y)|Dv|Dv ·Dϕ + ν∇v · ∇ϕ) dx = 〈f, ϕ〉

is satisfied for all ϕ ∈ V .
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Theorem 2.1 (Existence). Let f ∈ V ′ and let c satisfy conditions (C1)–(C2).

Then there exists a weak solution to (1), (2).

2.4. Do the solutions have a chance to be more regular?
The equation contains a strongly nonlinear term; thus before applying the differ-

ence quotients technique, which will be relatively technical here, we prove an a priori
estimate for v ∈ W 2,2(Ω). This allows to inquire whether such regularity can be ex-
pected. Therefore let us assume that v is smooth enough, such that all derivatives
have classical sense, more precisely v ∈ C3(Ω̄).

A priori estimate. In (7) we insert as a test function −∆v and obtain

(8) −
∫

Ω

c(y)|Dv|Dv ·D(∆v) dx + ν(∆v, ∆v) − b(v, v, ∆v) + (f, ∆v) = 0.

We start with the first integral

−
∫

Ω

c(y)|Dv|Dv ·D(∆v) dx =
∫

Ω

[∇xc(y)]|Dv|Dv · ∇(Dv) dx

+
∫

Ω

c(y)
∂2U(Dv)
∂(Dv)2

· ∇(Dv) · ∇(Dv) dx.

Since c ∈ W 1,∞, all the derivatives

∂c

∂ṽ
,

∂c

∂(ṽv)
,

∂c

∂(Dṽ)
,

∂c

∂(
�
|Dv|Dv)

are bounded in the L∞-norm. Thus recalling that Dv ∈ L3(Ω) and using the prop-
erties of convolutions we conclude for

∇xc =
(

∂c

∂ṽ

∂ṽ

∂xi
+

∂c

∂(ṽv)
∂(ṽv)
∂xi

+
∂c

∂(Dṽ)
∂(Dṽ)
∂xi

+
∂c

∂(
�
|Dv|Dv)

∂(
�
|Dv|Dv)
∂xi

)3

i=1

the existence of a positive constant m such that

(9) ‖∇xc‖L∞(Ω) 6 m.

Next, using (5) we obtain

∫

Ω

c(y)
∂2U(Dv)
∂(Dv)2

∇(Dv) · ∇(Dv) dx >
∫

Ω

c(y)|Dv||∇(Dv)|2 dx

> α

∫

Ω

|Dv||∇(Dv)|2 dx
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and
∣∣∣∣
∫

Ω

∇xc(y)|Dv|Dv · ∇(Dv) dx

∣∣∣∣

6 ‖∇xc‖L∞(Ω)

∫

Ω

|Dv|3/2(|Dv|1/2|∇(Dv)|) dx

Young

6 m

(
m

4α

∫

Ω

|Dv|3 dx +
α

m

∫

Ω

|Dv||∇(Dv)|2 dx

)

6 k‖∇v‖3
L3(Ω) + α

∫

Ω

|Dv||∇(Dv)|2 dx.

Now we estimate all the other terms:
∣∣∣∣
∫

Ω

v · ∇v ·∆v dx

∣∣∣∣ 6
∫

Ω

|∇v|3 dx +
∣∣∣∣
∫

Ω

v · ∇2v · ∇v dx

∣∣∣∣ =
∫

Ω

|∇v|3 dx.

Moreover, in the space of periodic functions we have

(∆v, ∆v) = ‖∇2v‖2
L2(Ω).

Now we estimate the term containing f and get

|(f, ∆v)| 6 ‖f‖L2(Ω)‖∇2v‖L2(Ω)

Young

6 1
2ν
‖f‖2

L2(Ω) +
ν

2
‖∇2v‖2

L2(Ω).

All the above information yields the a priori estimate

(10) ν‖∇2v‖2
L2(Ω) 6 2(k + 1)‖∇v‖3

L3(Ω) +
1
ν
‖f‖2

L2(Ω).

Hence v has a uniform estimate inW 2,2(Ω) given bounds for ‖f‖L2(Ω) and ‖∇v‖L3(Ω).

The a priori estimate for the latter was provided in [14]:

(11) ‖v‖3
V + ν‖∇v‖2

L2 6 k‖f‖3/2
V ′ .

Galerkin approximation. It is worth noticing that the second energy esti-
mate (10) is another method for showing the existence of solutions. We can show that

for the sequence of Galerkin approximations (vn) also estimate (10) holds and hence
vn is bounded in W 2,2(Ω). Next we conclude that for a subsequence, ∇vn → ∇v

strongly in Lp(Ω) and a.e. in Ω. Once we have obtained the a.e. convergence of the
gradients we can also conclude

c(yn)|Dvn|Dvn −→ c(y)|Dv|Dv a.e. in Ω.

We complete the proof by showing uniform integrability of the turbulent term and

applying Vitali’s Theorem, cf. [12] for the case of non-Newtonian fluid.
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3. W 2,2
-regularity

For showing higher regularity we use the method of difference quotients. We

cannot repeat the proof of higher regularity for a class of non-Newtonian fluids
in [10]. The term produced by the gradient of c will demand our special attention.

First let us collect general facts concerning this technique, for details see [5], [3], [6].
We denote

dh
kv(x) :=

v(x + hek)− v(x)
h

, k = 1, . . . , n,

where ek denotes the kth unit vector and

dhv := (dh
1v, . . . , dh

nv).

We consider the case of periodic boundary conditions and all the functions are meant
to be periodic. Then, if v(x) is defined in Ω, so is v(x+hek), and therefore also dh

kv.

The following assertions hold:
(i) If v ∈ W 1,p(Ω) then dh

kv ∈ W 1,p(Ω) and dh
k∇v = ∇dh

kv. The difference quotient

also commutes with the symmetric part of the gradient, i.e., dh
kDv = Ddh

kv,
since

dh
kDijv =

1
2
dh

k

( ∂vi

∂xj
+

∂vj

∂xi

)
=

1
2

(
dh

k

∂vi

∂xj
+ dh

k

∂vj

∂xi

)

=
1
2

( ∂

∂xj
dh

kvi +
∂

∂xi
dh

kvj

)
= Dij(dh

kv).

(ii) If either u or v have compact support, then
∫

Ω

udh
kv dx = −

∫

Ω

vd−h
k u dx.

(iii) dh
k(uv)(x) = u(x + hek)dh

kv + v(x)dh
ku.

Proposition 3.1.
(i) Let Ω = (0, L)3 and 1 6 p 6 ∞. Then

(12) ‖dhv‖Lp(Ω) 6 ‖∇v‖Lp(Ω)

for all v ∈ W 1,p(Ω) and h ∈ �
.

(ii) If v ∈ Lp(Ω), 1 < p < ∞ and if there exists a constant k independent of h such

that

(13) ‖dhv‖Lp(Ω) 6 k,

then v ∈ W 1,p
per(Ω) and ‖∇v‖Lp(Ω) 6 k.
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of Theorem 1.1. By virtue of (7) it can be shown that for all ϕ ∈ V the

equation for the difference quotients holds, namely for k = 1, . . . , n

∫

Ω

(
dh

kvj(x)
∂vi

∂xj
(x) + vj(x + hek)

∂dh
kvi(x)
∂xj

)
ϕi(x) dx

+
∫

Ω

(dh
kc(y(x))|Dv(x)|Dijv(x) + c(y(x + hek))dh

k(|Dv(x)|Dijv(x)))Dijϕ(x) dx

+ ν

∫

Ω

dh
k

(∂vi(x)
∂xj

)∂ϕi(x)
∂xj

dx

=
∫

Ω

dh
kfi(x)ϕi(x) dx.

Choosing as a test function ϕ = dh
kv ∈ V and summing over k one obtains

∫

Ω

(
dh

kvj(x)
∂vi

∂xj
(x) + vj(x + hek)

∂dh
kvi(x)
∂xj

)
dh

kvi(x) dx

+
∫

Ω

dh
kc(y(x))|Dv(x)|Dijv(x)Dij(dh

kv(x)) dx

+
∫

Ω

c(y(x + hek))dh
k(|Dv(x)|Dijv(x))Dij(dh

kv(x)) dx + ν

∫

Ω

|dh
k∇v(x)|2 dx

=
∫

Ω

dh
kfi(x)dh

kvi(x) dx.

It is easy to observe that
∫
Ω

vj(∂dh
kvi/∂xj)dh

kvi dx = 0 and the first term on the
right-hand side can be estimated with help of Hölder’s inequality and condition (12)

as
∣∣∣∣
∫

Ω

dh
kvj(x)

∂vi

∂xj
(x)dh

kvi(x) dx

∣∣∣∣ 6 ‖dh
kv‖L3(Ω)‖∇v‖L3(Ω)‖dh

kv‖L3(Ω)‖(14)

6 ‖∇v‖3
L3(Ω).

Next we concentrate on the turbulent term. The first term is estimated using Young’s
inequality. The choice of a constant K appearing in the following estimates will be

specified later,
∣∣∣∣
∫

Ω

dh
kc(y(x))|Dv(x)|Dijv(x)Dij(dh

kv) dx

∣∣∣∣(15)

6 ‖dh
kc(y)‖L∞(Ω)

∫

Ω

|Dv(x)|2|Dij(dh
kv(x))| dx

6 ‖∇xc‖L∞(Ω)

(
1

4K

∫

Ω

|Dv(x)|3 dx + K

∫

Ω

|Dv(x)||D(dh
kv)|2 dx

)

6 ‖∇xc‖L∞(Ω)

(
1

4K
‖∇v‖3

L3(Ω) + K

∫

Ω

|Dv(x)||D(dh
kv)|2 dx

)
.
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Note that ‖∇xc‖L∞(Ω) < ∞, cf. (9). We will use the term

J :=
∫

Ω

c(y(x + hek))dh
k(|Dv(x)|Dijv(x))Dij (dh

kv) dx

to cancel the term
∫
Ω |Dv(x)||Dij (dh

kv)|2 dx from the right-hand side However, it is
not as straightforward as it was in the formal a priori estimate. The shifts produce

some different terms, therefore, an additional estimate using strong monotonicity of
the operator |Dv|Dv has to be used to obtain the desired inequality. Notice that
due to (4) we have

dh
k(|Dv(x)|Dijv(x)|) =

1
h

∫ 1

0

d
ds

∂U(Dv(x) + s(Dv(x + hek)−Dv(x)))
∂Dijv

ds(16)

=
∫ 1

0

∂2U(Dv(x) + s(Dv(x + hek)−Dv(x)))
∂(Dijv)∂(Dlmv)

ds

× Dlm(x + hek)−Dlmv(x)
h

.

From (5) and (16) one obtains

J > α

∫

Ω

∫ 1

0

|Dv(x) + s(Dv(x + hek)−Dv(x))| ds |D(dh
kv)|2 dx

> α

∫

Ω

∣∣∣∣
∫ 1

0

Dv(x) + s(Dv(x + hek)−Dv(x)) ds

∣∣∣∣|D(dh
kv)|2 dx

=
1
2
α

∫

Ω

|Dv(x) + Dv(x + hek)||D(dh
kv)|2 dx.

On the other hand, the strong monotonicity (6) implies that

J > α

∫

Ω

dh
k(|Dv(x)|Dijv(x)|)Dij (dh

kv) dx

> αK1

∫

Ω

1
h2
|Dv(x + hek)−Dv(x)|3 dx

= αK1

∫

Ω

|Dv(x + hek)−Dv(x)||dh
kDv|2 dx.

Thus the above estimates for J yield two inequalities

(17) J > α

2

∫

Ω

|Dv(x) + Dv(x + hek)||D(dh
kv)|2 dx

and

(18) J > αK1

∫

Ω

|Dv(x + hek)−Dv(x)||dh
kDv|2 dx.
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After summing (17) and (18) we obtain a further estimate

2K1 + 1
αK1

J

>
∫

Ω

(|Dv(x) + Dv(x + hek)|+ |Dv(x) −Dv(x + hek)|) · |D(dh
kv)|2 dx

>
∫

Ω

|Dv(x) + Dv(x + hek) + Dv(x) −Dv(x + hek)||D(dh
kv)|2 dx

= 2
∫

Ω

|Dv(x)||D(dh
kv)|2 dx

which finally yields

(19) J > 2αK1

2K1 + 1

∫

Ω

|Dv(x)||D(dh
kv(x))|2 dx.

Now the constant K in inequality (15) can be determined, namely

(20) K =
2αK1

(2K1 + 1)‖∇xc‖L∞(Ω)
.

Next we concentrate on the term
∫
Ω

dh
kfid

h
kvi dx. Since

‖dh
kf‖H−1(Ω) = sup

‖ϕ‖H1(Ω)61

|〈dh
kf, ϕ〉|

and according to Proposition 3.1 one has ‖d−h
k ϕ‖L2(Ω) 6 ‖∇ϕ‖L2(Ω), we estimate

∫

Ω

|dh
kfϕ| dx =

∫

Ω

|fd−h
k ϕ| dx 6 ‖f‖L2(Ω)‖∇ϕ‖L2(Ω) 6 ‖f‖L2(Ω).

Thus, finally, with use of Young’s inequality we arrive at
∫

Ω

|dh
kfid

h
kvi| dx 6 ‖dh

kf‖H−1(Ω)‖dh
kv‖H1(Ω) 6 k‖f‖L2(Ω)‖dh

k∇v‖L2(Ω)(21)

6 1
2ν
‖f‖2

L2(Ω) +
ν

2
‖dh

k∇v‖2
L2(Ω).

Combining (14), (15), (19), (20) and (21) yields

(22)
ν

2

∫

Ω

|dh
k(∇v)|2 dx 6

(k‖∇xc‖L∞(Ω)

4K
+ 1

)
‖∇v‖3

L3(Ω) +
1
2ν
‖f‖2

L2(Ω).

As was recalled in (11), v ∈ V and we assumed c ∈ W 1,∞, f ∈ L2(Ω). Hence
dh

k(∇v) is uniformly bounded (w.r.t. h) in L2(Ω) and Proposition 3.1 allows to con-
clude that ∇v ∈ W 1,2(Ω), thus v ∈ W 2,2(Ω). �
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3.1. Uniqueness
Higher regularity of solutions enables us to prove uniqueness of solutions for a

small right-hand side f . The crucial points in estimating the nonlinear turbulent
term will be the facts that the solution is in W 2,2(Ω) and that W 2,2(Ω) ⊂ W 1,4(Ω).
�������
	

of Theorem 1.2. Let v1, v2 be two solutions to problem (1), namely they
satisfy the equations

b(v1, v1, ϕ) +
∫

Ω

c(y1)|Dv1|Dv1 ·Dϕ dx + ν(∇v1,∇ϕ) = (f, ϕ),(23)

b(v2, v2, ϕ) +
∫

Ω

c(y2)|Dv2|Dv2 ·Dϕ dx + ν(∇v2,∇ϕ) = (f, ϕ)(24)

for all ϕ ∈ V where

y1 = (ṽ1, ṽ1v1, Dṽ1,
�

|Dv1|Dv1), y2 = (ṽ2, ṽ2v2, Dṽ2,
�

|Dv2|Dv2).

Subtracting equation (24) from (23) and choosing as a test function w = v1 − v2 we
obtain

b(v1, v1, w)− b(v2, v2, w) +
∫

Ω

c(y1)|Dv1|Dv1 ·Dw dx

−
∫

Ω

c(y2)|Dv2|Dv2 ·Dw dx + ν‖∇w‖2
L2(Ω) = 0.

Notice that the difference of the trilinear forms b can be transformed to

b(v1, v1, w)− b(v2, v2, w) = b(v1, w, w) + b(v1, v2, w)− b(v2, v2, w) = b(w, v2, w)

and then estimated by

|b(w, v2, w)| 6 ‖w‖2
L3(Ω)‖∇v2‖L3(Ω) 6 k1‖∇w‖2

L2(Ω)‖∇v2‖L3(Ω).

Transforming the difference of the turbulent terms into two integrals, i.e.,

∫

Ω

{c(y1)|Dv1|Dv1 − c(y2)|Dv2|Dv2}Dw dx

=
∫

Ω

c(y1)(|Dv1|Dv1 − |Dv2|Dv2)Dw dx +
∫

Ω

(c(y1)− c(y2))|Dv2|Dv2Dw dx,

we estimate the first using the strict monotonicity (6) and Korn’s inequality:

∫

Ω

c(y1)(|Dv1|Dv1 − |Dv2|Dv2) ·Dw dx > αk2‖∇w‖3
L3(Ω).
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As c is Lipschitz continuous, the properties of convolutions allow us to claim that

for small data

|c(y1)− c(y2)| 6 k(|ṽ1 − ṽ2|+ |Dṽ1 −Dṽ2|) 6 k‖v1 − v2‖L3(Ω).

Then Hölder’s inequality and the embeddingsW 1,2(Ω) ⊂ L3(Ω),W 2,2(Ω) ⊂ W 1,4(Ω)
yield

∣∣∣∣
∫

Ω

(c(y1)− c(y2))|Dv2|Dv2 ·Dw dx

∣∣∣∣ 6 k‖w‖L3(Ω)

∫

Ω

|Dv2|2 · |∇w| dx

6 k‖∇w‖L2(Ω)‖∇v2‖2
L4(Ω)‖∇w‖L2(Ω)

6 k3(‖∇2v2‖2
L2(Ω) + ‖∇v2‖2

L2(Ω))‖∇w‖2
L2(Ω).

Collecting all the above estimates we obtain

αk2‖∇w‖3
L3(Ω) + ν‖∇w‖2

L2(Ω) 6 k3(‖∇2v2‖2
L2(Ω) + ‖∇v2‖2

L2(Ω))‖∇w‖2
L2(Ω)(25)

+ k1‖∇w‖2
L2(Ω)‖∇v2‖L3(Ω).

From the first and second energy estimate (11) and (10) we know that there exist
positive constants k4, k5, k6 such that

‖∇v2‖3
L3(Ω) 6 k4‖f‖3/2

V ′ , ‖∇2v2‖2
L2(Ω) 6 k5(‖f‖2

L2(Ω) + ‖f‖3/2
V ′ )

and ‖∇v2‖2
L2(Ω) 6 k6‖f‖3/2

V ′ .

The same estimates hold also for v1. Thus inserting the latter estimates into (25)

we get that

αk2‖∇w‖3
L3 +

[
ν − k1k

1/2
4 ‖f‖1/2

V ′ − k3k6‖f‖3/2
V ′ − k3k5(‖f‖2

L2 + ‖f‖3/2
V ′ )

]
‖∇w‖2

L2 6 0.

Choosing f small enough in the L2-norm (hence also in V ′) such that the factor next
to ‖∇w‖2

L2(Ω) remains positive we can satisfy the inequality only if w = 0, which
implies v2 = v1. Thus the solution is unique. �
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