[6] R. J. DiPerna, P.-L. Lions:
Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547.
DOI 10.1007/BF01393835 |
MR 1022305
[7] R. J. DiPerna, P.-L. Lions:
On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. 130 (1989), 321–366.
DOI 10.2307/1971423 |
MR 1014927
[8] R. J. DiPerna, A. J. Majda:
Oscillations and concentration in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987), 667–689.
DOI 10.1007/BF01214424 |
MR 0877643
[10] E. Weinan:
Dynamics of vortex liquids in Ginsburg-Landau theories with application to superconductivity. Phys. Rev. B 50 (1994), 1126–1135.
DOI 10.1103/PhysRevB.50.1126
[11] L. C. Evans:
Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS No. 74. AMS, Providence, 1990.
MR 1034481
[12] E. Feireisl, A. Novotný, and H. Petzeltová:
On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 (2001), 358–392.
DOI 10.1007/PL00000976 |
MR 1867887
[14] R. T. Glassey, J. K. Hunter, and Yuxi Zheng:
Singularities and oscillations in a nonlinear variational wave equation. In: Singularities and Oscillations. IMA, Vol. 91, J. Rauch, M. Taylor (eds.), Springer-Verlag, New York, 1997, pp. 37–60.
MR 1601273
[16] A. Grundland E. Infeld:
A family of nonlinear Klein-Gordon equations and their solutions. J. Math. Phys. 33 (1992), 2498–2503.
DOI 10.1063/1.529620 |
MR 1167950
[18] J. K. Hunter, Yuxi Zheng:
On a nonlinear hyperbolic variational equation I and II. Arch. Ration. Mech. Anal. 129 (1995), 305–353, 355–383.
DOI 10.1007/BF00379259
[24] P.-L. Lions:
Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models. Oxford Lecture Series in Mathematics and Its Applications. Clarendon Press, Oxford, 1998.
MR 1637634
[26] N. Masmoudi, Ping Zhang:
Weak solutions to the vortex density equations arising from sup-conductivity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 441–458.
DOI 10.1016/j.anihpc.2004.07.002 |
MR 2145721
[28] F. Murat:
Compacité par compensation. Ann. Sc. Norm. Super. Pisa, Cl. Sci, IV 5 (1978), 489–507.
MR 0506997 |
Zbl 0399.46022
[29] R. A. Saxton:
Dynamic instability of the liquid crystal director. In: Contemp. Math. Vol. 100: Current Progress in Hyperbolic Systems, W. B. Lindquist (ed.), AMS, Providence, 1989, pp. 325–330.
MR 1033527 |
Zbl 0702.35180
[30] L. Tartar:
Compensated compactness and applications to partial differential equations. Nonlinear Anal. Mech. Heriot-Watt Symposium. Research Notes in Math., Vol. 39,, R. J. Knops (ed.), Pitman Press, , 1979.
MR 0584398
[32] Zhouping Xin, Ping Zhang:
On the weak solutions to a shallow water equation. Comm. Pure. Appl. Math. LIII (2000), 1411–1433.
MR 1773414
[33] L. C. Young:
Lectures on the Calculus of Variations and Optimal Control Theory. Saunders, Philadelphia-London-Toronto, 1969.
MR 0259704 |
Zbl 0177.37801
[34] Ping Zhang, Yuxi Zheng:
On oscillations of an asymptotic equation of a nonlinear variational wave equation. Asymptotic Anal. 18 (1998), 307–327.
MR 1668954
[35] Ping Zhang, Yuxi Zheng:
Existence and uniqueness of solutions to an asymptotic equation arising from a variational wave equation with general data. Arch. Ration. Mech. Anal. 155 (2000), 49–83.
DOI 10.1007/s205-000-8002-2 |
MR 1799274
[36] Ping Zhang, Yuxi Zheng:
Rarefactive solutions to a nonlinear variational wave equation. Commun. Partial Differ. Equations 26 (2001), 381–419.
DOI 10.1081/PDE-100002240 |
MR 1842038
[39] Ping Zhang, Yuxi Zheng:
Weak solutions to a nonlinear variational wave equation with general data. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 207–226.
DOI 10.1016/j.anihpc.2004.04.001 |
MR 2124163