[1] E. Acerbi, N. Fusco:
Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984), 125–145.
MR 0751305
[2] E. Acerbi, N. Fusco:
A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987), 261–281.
MR 0888453
[3] E. Acerbi, N. Fusco:
Local regularity for minimizers of nonconvex integrals. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 16 (1989), 603–636.
MR 1052736
[4] E. Acerbi, N. Fusco:
Partial regularity under anisotropic $(p,q)$ growth conditions. J. Differ. Equations 107 (1994), 46–67.
MR 1260848
[5] E. Acerbi, G. Mingione:
Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001), 121–140.
MR 1814973
[6] E. Acerbi, G. Mingione:
Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 30 (2001), 311–339.
MR 1895714
[7] E. Acerbi, G. Mingione:
Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164 (2002), 213–259.
MR 1930392
[8] E. Acerbi, G. Mingione:
Gradient estimates for the $p(x)$-Laplacean system. J. Reine Angew. Math. 584 (2005), 117–148.
MR 2155087
[9] E. Acerbi, G. Mingione:
Gradient estimates for a class of parabolic systems. Duke Math. J, to appear.
MR 2286632
[10] E. Acerbi, G. Mingione, and G. A. Seregin:
Regularity results for parabolic systems related to a class of non Newtonian fluids. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 21 (2004), 25–60.
MR 2037246
[11] Yu. A. Alkhutov:
The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differ. Equations 33 (1997), 1653–1663.
MR 1669915 |
Zbl 0949.35048
[12] F. J. Almgren:
Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. 87 (1968), 321–391.
MR 0225243 |
Zbl 0162.24703
[13] F. J. Almgren:
Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints. Mem. Am. Math. Soc. 165. Am. Math. Soc. (AMS), Providence, 1976.
MR 0420406
[14] L. Ambrosio:
Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Lecture Notes. Scuola Normale Superiore, Pisa, 1995. (Italian)
MR 1736268
[15] S. N. Antontsev, S. I. Shmarev:
A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., Theory Methods Appl. 60 (2005), 515–545.
MR 2103951
[16] S. N. Antontsev, S. I. Shmarev: Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions. Pré-publicasao n. 4, DMUBI.
[17] S. N. Antontsev, V. V. Zhikov:
Higher integrability for parabolic equations of $p(x;t)$-Laplacian type. Adv. Differential Equations 10 (2005), 1053–1080.
MR 2161759
[18] G. Anzellotti:
On the $C^{1,\alpha }$-regularity of $\omega $-minima of quadratic functionals. Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 2 (1983), 195–212.
MR 0718371
[19] A. A. Arkhipova:
Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $q$ greater than two. J. Math. Sci. 115 (2003), 2735–2746.
MR 1810609
[20] G. Aronsson, M. G. Crandall, and P. Juutinen:
A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc., New Ser. 41 (2004), 439–505.
MR 2083637
[22] H. Attouch, C. Sbordone:
Asymptotic limits for perturbed functionals of calculus of variations. Ric. Mat. 29 (1980), 85–124.
MR 0605596
[23] J. M. Ball:
Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977), 337–403.
MR 0475169 |
Zbl 0368.73040
[24] J. M. Ball:
Some open problems in elasticity. In: Geometry, Mechanics, and Dynamics, P. Newton (ed.), Springer-Verlag, New York, 2002, pp. 3–59.
MR 1919825 |
Zbl 1054.74008
[25] J. M. Ball, V. J. Mizel:
One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Ration. Mech. Anal. 90 (1985), 325–388.
MR 0801585
[26] J. M. Ball, F. Murat:
$W^{1,p}$-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), 225–253.
MR 0759098
[27] J. M. Ball, J. C. Currie, and P. J. Olver:
Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41 (1981), 135–174.
MR 0615159
[28] L. Beck: Partielle Regularität für Schwache Lösungen nichtlinearer elliptischer Systeme: der Subquadratische Fall. Diploma Thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 2005. (German)
[29] L. Beck: Boundary regularity results for systems with sub-linear growth. (to appear).
[30] I. Benedetti, E. Mascolo:
Regularity of minimizers for nonconvex vectorial integrals with $p$-$q$ growth via relaxation methods. Abstr. Appl. Anal. (2004), 27–44.
MR 2058791
[31] A. Bensoussan, J. Frehse:
Regularity Results for Nonlinear Elliptic Systems and Applications. Applied Mathematical Sciences 151. Springer-Verlag, Berlin, 2002.
MR 1917320
[32] J. J. Bevan: Polyconvexity and counterexamples to regularity in the multidimensional calculus of variations. PhD. Thesis, , Oxford, 2003.
[33] J. Bevan:
Singular minimizers of strictly polyconvex functionals in $\mathbb{R}^{2\times 2}$. Calc. Var. Partial Differ. Equ. 23 (2005), 347–372.
MR 2142068
[34] T. Bhattacharya, F. Leonetti:
A new Poincaré inequality and its application to the regularity of minimizers of integral functionals with nonstandard growth. Nonlinear Anal., Theory Methods Appl. 17 (1991), 833–839.
MR 1131493
[35] T. Bhattacharya, F. Leonetti:
$W^{2,2}$ regularity for weak solutions of elliptic systems with nonstandard growth. J. Math. Anal. Appl. 176 (1993), 224–234.
MR 1222166
[36] M. Bildhauer:
Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics Vol. 1818. Springer-Verlag, Berlin, 2003.
MR 1998189
[37] M. Bildhauer:
A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth. J. Convex Anal. 9 (2002), 117–137.
MR 1917392 |
Zbl 1011.49022
[38] M. Bildhauer, M. Fuchs:
Partial regularity for variational integrals with $(s,\mu ,q)$-growth. Calc. Var. Partial Differ. Equ. 13 (2001), 537–560.
MR 1867941
[39] M. Bildhauer, M. Fuchs:
Partial regularity for a class of anisotropic variational integrals with convex hull property. Asymptotic Anal. 32 (2002), 293–315.
MR 1993652
[40] M. Bildhauer, M. Fuchs:
$C^{1,\alpha }$-solutions to non-autonomous anisotropic variational problems. Calc. Var. Partial Differ. Equ. 24 (2005), 309–340.
MR 2174429
[41] M. Bildhauer, M. Fuchs, and X. Zhong:
A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids. Manuscr. Math. 116 (2005), 135–156.
MR 2122416
[42] S. S. Byun:
Parabolic equations with BMO coefficients in Lipschitz domains. J. Differ. Equations 209 (2005), 229–265.
MR 2110205 |
Zbl 1061.35021
[43] L. Boccardo, P. Marcellini, and C. Sbordone:
$L^\infty $-regularity for variational problems with sharp non-standard growth conditions. Boll. Unione Mat. Ital. VII. Ser. A 4 (1990), 219–225.
MR 1066774
[44] B. Bojarski, T. Iwaniec:
Analytical foundations of the theory of quasiconformal mappings in $\mathbb{R}^{n}$. Ann. Acad. Sci. Fenn., Ser. A I 8 (1983), 257–324.
MR 0731786
[45] B. Bojarski, C. Sbordone, and I. Wik:
The Muckenhoupt class $A_1(R)$. Stud. Math. 101 (1992), 155–163.
MR 1149569
[46] E. Bombieri:
Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78 (1982), 99–130.
MR 0648941 |
Zbl 0485.49024
[47] M. Bonk, J. Heinonen:
Smooth quasiregular mappings with branching. Publ. Math., Inst. Hautes Étud. Sci. 100 (2004), 153–170.
MR 2102699
[48] G. Buttazzo, M. Belloni:
A survey of old and recent results about the gap phenomenon in the Calculus of Variations. In: Recent Developments in Well-posed Variational Problems 331, R. Lucchetti et al. (eds.), Kluwer Academic Publishers, Dordrecht, 1995, pp. 1–27.
MR 1351738
[49] G. Buttazzo, V. J. Mizel:
Interpretation of the Lavrentiev Phenomenon by relaxation. J. Funct. Anal. 110 (1992), 434–460.
MR 1194993
[50] R. Caccioppoli:
Limitazioni integrali per le soluzioni di un’equazione lineare ellitica a derivate parziali. Giorn. Mat. Battaglini, IV. Ser. 80 (1951), 186–212. (Italian)
MR 0046536
[51] L. A. Caffarelli, I. Peral:
On $W^{1,p}$ estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51 (1998), 1–21.
MR 1486629
[52] S. Campanato:
Hölder continuity of the solutions of some non-linear elliptic systems. Adv. Math. 48 (1983), 15–43.
MR 0697613
[53] S. Campanato:
Elliptic systems with non-linearity $q$ greater than or equal to two. Regularity of the solution of the Dirichlet problem. Ann. Mat. Pura Appl., IV. Ser. 147 (1987), 117–150.
MR 0916705
[54] S. Campanato:
Hölder continuity and partial Hölder continuity results for $H^{1,q}$-solutions of nonlinear elliptic systems with controlled growth. Rend. Sem. Mat. Fis. Milano 52 (1982), 435–472.
MR 0802957 |
Zbl 0576.35041
[55] S. Campanato:
Some new results on differential systems with monotonicity property. Boll. Unione Mat. Ital., VII. Ser. 2 (1988), 27–57.
Zbl 0662.35039
[56] M. Carozza, N. Fusco, and G. Mingione:
Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl., IV. Ser. 175 (1998), 141–164.
MR 1748219
[57] P. Celada, G. Cupini, and M. Guidorzi:
Existence and regularity of minimizers of nonconvex integrals with $p$-$q$ growth. ESAIM Control Optim. Calc. Var, to appear.
MR 2306640
[58] Y. Chen, S. Levine, and R. Rao: Functionals with $p(x)$-growth in image processing. Preprint, 2004.
[59] V. Chiadó Piat, A. Coscia:
Hölder continuity of minimizers of functionals with variable growth exponent. Manuscr. Math. 93 (1997), 283–299.
MR 1457729
[60] F. Chiarenza, M. Frasca, and P. Longo:
$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336 (1993), 841–853.
MR 1088476
[61] M. Chipot, L. C. Evans:
Linearization at infinity and Lipschitz estimates for certain problems in the calculus of variations. Proc. R. Soc. Edinb., Sect. A 102 (1986), 291–303.
MR 0852362
[62] A. Cianchi:
Boundedness of solutions to variational problems under general growth conditions. Commun. Partial Differ. Equations 22 (1997), 1629–1646.
MR 1469584 |
Zbl 0892.35048
[63] A. Cianchi:
Local boundedness of minimizers of anisotropic functionals. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 17 (2000), 147–168.
MR 1753091 |
Zbl 0984.49019
[64] A. Cianchi, N. Fusco:
Gradient regularity for minimizers under general growth conditions. J. Reine Angew. Math. 507 (1999), 15–36.
MR 1670258
[65] F. Colombini:
Un teorema di regolarità alla frontiera per soluzioni di sistemi ellittici quasi lineari. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 25 (1971), 115–161. (Italian)
MR 0289939 |
Zbl 0211.13502
[66] A. Coscia, G. Mingione:
Hölder continuity of the gradient of $p(x)$-harmonic mappings. C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 363–368.
MR 1675954
[67] D. Cruz-Uribe, C. J. Neugebauer:
The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347 (1995), 2941–2960.
MR 1308005
[68] G. Cupini, N. Fusco, and R. Petti:
Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999), 578–597.
MR 1703712
[69] G. Cupini, M. Guidorzi, and E. Mascolo:
Regularity of minimizers of vectorial integrals with $p$-$q$ growth. Nonlinear Anal., Theory Methods Appl. 54 (2003), 591–616.
MR 1983438
[70] G. Cupini, A. P. Migliorini:
Hölder continuity for local minimizers of a nonconvex variational problem. J. Convex Anal. 10 (2003), 389–408.
MR 2043864
[71] B. Dacorogna:
Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46 (1982), 102–118.
MR 0654467 |
Zbl 0547.49003
[72] B. Dacorogna:
Direct Methods in the Calculus of Variations. Applied Mathematical Sciences 78. Springer-Verlag, Berlin, 1989.
MR 0990890
[73] B. Dacorogna, P. Marcellini:
Implicit Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications 37. Birkhäuser-Verlag, Boston, 1999.
MR 1702252
[74] A. Dall’Aglio, E. Mascolo, and G. Papi:
Local boundedness for minima of functionals with nonstandard growth conditions. Rend. Mat. Appl., VII Ser. 18 (1998), 305–326.
MR 1659830
[75] L. D’Apuzzo, C. Sbordone:
Reverse Hölder inequalities. A sharp result. Rend. Mat. Appl., VII Ser. 10 (1990), 357–366.
MR 1076164
[76] J. Daněček, O. John, and J. Stará:
Interior $C^{1,\gamma }$-regularity for weak solutions of nonlinear second order elliptic systems. Math. Nachr. 276 (2004), 47–56.
MR 2100046
[77] E. De Giorgi:
Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino, P. I., III. Ser. 3 (1957), 25–43. (Italian)
MR 0093649 |
Zbl 0084.31901
[78] E. De Giorgi: Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore, Pisa, 1960–61. (Italian)
[79] E. De Giorgi:
Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Unione Mat. Ital., IV. Ser. 1 (1968), 135–137. (Italian)
MR 0227827
[80] E. DiBenedetto:
Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations. Arch. Ration. Mech. Anal. 100 (1988), 129–147.
MR 0913961 |
Zbl 0708.35017
[81] E. DiBenedetto:
Degenerate Parabolic Equations. Universitext. Springer-Verlag, New York, 1993.
MR 1230384
[82] E. DiBenedetto, A. Friedman:
Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357 (1985), 1–22.
MR 0783531
[83] E. DiBenedetto, J. J. Manfredi:
On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115 (1993), 1107–1134.
MR 1246185
[84] E. DiBenedetto, N. Trudinger:
Harnack inequalities for quasiminima of variational integrals. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 1 (1984), 295–308.
MR 0778976
[85] L. Diening:
Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657–700.
MR 2166733
[86] L. Diening, P. Hästö, and A. Nekvinda: Open problems in variable exponent Lebesgue and Sobolev spaces. In: FSDONA Proceedings, Milovy, Czech Republic, 2004, P. Drábek, J. Rákosník (eds.), 2004, pp. 38–58.
[87] L. Diening, M. Růžička:
Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics. J. Reine Angew. Math. 563 (2003), 197–220.
MR 2009242
[88] G. Di Fazio:
$L^p$ estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Unione Mat. Ital., VII. Ser., A 10 (1996), 409–420.
MR 1405255
[89] A. Dolcini, L. Esposito, and N. Fusco:
$C^{0,\alpha }$ regularity of $\omega $-minima. Boll. Unione Mat. Ital., VII. Ser., A 10 (1996), 113–125.
MR 1386250
[90] G. Dolzmann, J. Kristensen:
Higher integrability of minimizing Young measures. Calc. Var. Partial Differ. Equ. 22 (2005), 283–301.
MR 2118900
[91] F. Duzaar, A. Gastel:
Nonlinear elliptic systems with Dini continuous coefficients. Arch. Math. 78 (2002), 58–73.
MR 1887317
[92] F. Duzaar, A. Gastel, and J. F. Grotowski:
Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000), 665–687.
MR 1786163
[93] F. Duzaar, A. Gastel, and G. Mingione:
Elliptic systems, singular sets and Dini continuity. Commun. Partial Differ. Equations 29 (2004), 1215–1240.
MR 2097582
[94] F. Duzaar, J. F. Grotowski:
Optimal interior partial regularity for nonlinear elliptic systems: The method of $A$-harmonic approximation. Manuscr. Math. 103 (2000), 267–298.
MR 1802484
[95] F. Duzaar, J. F. Grotowski, and M. Kronz:
Partial and full boundary regularity for minimizers of functionals with nonquadratic growth. J. Convex Anal. 11 (2004), 437–476.
MR 2158914
[96] F. Duzaar, J. F. Grotowski, and M. Kronz:
Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl., IV. Ser. 184 (2005), 421–448.
MR 2177809
[97] F. Duzaar, J. F. Grotowski, and K. Steffen:
Optimal regularity results via $A$-harmonic approximation. In: Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrandt (ed.), Springer-Verlag, Berlin, 2003, pp. 265–296.
MR 2008343
[98] F. Duzaar, J. Kristensen, and G. Mingione:
The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math (to appear).
MR 2300451
[99] F. Duzaar, M. Kronz:
Regularity of $\omega $-minimizers of quasi-convex variational integrals with polynomial growth. Differ. Geom. Appl. 17 (2002), 139–152.
MR 1925762
[100] F. Duzaar, G. Mingione:
The $p$-harmonic approximation and the regularity of $p$-harmonic maps. Calc. Var. Partial Differ. Equ. 20 (2004), 235–256.
MR 2062943
[101] F. Duzaar, G. Mingione:
Regularity for degenerate elliptic problems via $p$-harmonic approximation. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 21 (2004), 735–766.
MR 2086757
[102] F. Duzaar, G. Mingione:
Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 22 (2005), 705–751.
MR 2172857
[103] F. Duzaar, G. Mingione: Non-autonomous functionals with $(p,q)$-growth: regularity in borderline cases. In prepration.
[104] F. Duzaar, K. Steffen:
Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math. 546 (2002), 73–138.
MR 1900994
[106] A. Elcrat, N. G. Meyers:
Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. Duke Math. J. 42 (1975), 121–136.
MR 0417568
[107] M. Eleuteri:
Hölder continuity results for a class of functionals with non-standard growth. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 7 (2004), 129–157.
MR 2044264 |
Zbl 1178.49045
[108] L. Esposito, F. Leonetti, and G. Mingione:
Regularity for minimizers of functionals with $p$-$q$ growth. Nonlinear Differ. Equ. Appl. 6 (1999), 133–148.
MR 1694803
[109] L. Esposito, F. Leonetti, and G. Mingione:
Higher integrability for minimizers of integral functionals with $(p,q)$ growth. J. Differ. Equations 157 (1999), 414–438.
MR 1713266
[110] L. Esposito, F. Leonetti, and G. Mingione:
Regularity results for minimizers of irregular integrals with $(p,q)$ growth. Forum Math. 14 (2002), 245–272.
MR 1880913
[111] L. Esposito, F. Leonetti, and G. Mingione:
Sharp regularity for functionals with $(p,q)$ growth. J. Differ. Equations 204 (2004), 5–55.
MR 2076158
[112] L. Esposito, G. Mingione:
A regularity theorem for $\omega $-minimizers of integral functionals. Rend. Mat. Appl., VII. Ser. 19 (1999), 17–44.
MR 1710133
[113] L. Esposito, G. Mingione:
Partial regularity for minimizers of convex integrals with $L\log L$-growth. Nonlinear Differ. Equ. Appl. 7 (2000), 107–125.
MR 1746116
[114] L. Esposito, G. Mingione:
Partial regularity for minimizers of degenerate polyconvex energies. J. Convex Anal. 8 (2001), 1–38.
MR 1829054
[115] L. C. Evans:
Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986), 227–252.
MR 0853966 |
Zbl 0627.49006
[116] L. C. Evans, R. F. Gariepy:
On the partial regularity of energy-minimizing, area-preserving maps. Calc. Var. Partial Differ. Equ. 9 (1999), 357–372.
MR 1731471
[117] E. B. Fabes, D. W. Stroock:
A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96 (1986), 327–338.
MR 0855753
[118] X. Fan, D. Zhao:
A class of De Giorgi type and Hölder continuity. Nonlinear Anal., Theory Methods Appl. 36 (1999), 295–318.
MR 1688232
[119] X. Fan, D. Zhao:
The quasi-minimizer of integral functionals with $m(x)$ growth conditions. Nonlinear Anal., Theory Methods Appl. 39 (2000), 807–816.
MR 1736389
[120] D. Faraco, P. Koskela, and X. Zhong:
Mappings of finite distortion: the degree of regularity. Adv. Math. 190 (2005), 300–318.
MR 2102659
[121] V. Ferone, N. Fusco:
Continuity properties of minimizers of integral functionals in a limit case. J. Math. Anal. Appl. 202 (1996), 27–52.
MR 1402586
[122] I. Fonseca, N. Fusco:
Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997), 463–499.
MR 1612389
[123] I. Fonseca, N. Fusco, P. Marcellini:
An existence result for a nonconvex variational problem via regularity. ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95.
MR 1925022
[124] I. Fonseca, G. Leoni, and J. Malý:
Weak continuity and lower semicontinuity results for determinants. Arch. Ration. Mech. Anal. 178 (2005), 411–448.
MR 2196498
[125] I. Fonseca, J. Malý:
Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 14 (1997), 309–338.
MR 1450951
[126] I. Fonseca, J. Malý, and G. Mingione:
Scalar minimizers with fractal singular sets. Arch. Ration. Mech. Anal. 172 (2004), 295–307.
MR 2058167
[127] M. Foss:
Examples of the Lavrentiev Phenomenon with continuous Sobolev exponent dependence. J. Convex Anal. 10 (2003), 445–464.
MR 2043868 |
Zbl 1084.49002
[128] M. Foss:
A condition sufficient for the partial regularity of minimizers in two-dimensional nonlinear elasticity. In: The $p$-harmonic Equation and Recent Advances in Analysis. Contemp. Math. 370, P. Poggi-Corradini (ed.), Amer. Math. Soc., Providence, 2005.
MR 2126701
[129] M. Foss:
Global regularity for almost minimizers of nonconvex variational problems. Preprint, 2006.
MR 2372803
[130] M. Foss, W. J. Hrusa, and V. J. Mizel:
The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Ration. Mech. Anal. 167 (2003), 337–365.
MR 1981861
[131] M. Foss, W. J. Hrusa, and V. J. Mizel:
The Lavrentiev phenomenon in nonlinear elasticity. J. Elasticity 72 (2003), 173–181.
MR 2064223
[132] J. Frehse:
A note on the Hölder continuity of solutions of variational problems. Abh. Math. Semin. Univ. Hamb. 43 (1975), 59–63.
MR 0377648 |
Zbl 0316.49008
[133] J. Frehse, G. A. Seregin:
Regularity of Solutions to Variational Problems of the Deformation Theory of Plasticity with Logarithmic Hardening. Amer. Math. Soc. Transl. Ser. 2, 193. Amer. Math. Soc., Providence, 1999.
MR 1736908
[134] M. Fuchs:
Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions. Analysis 7 (1987), 83–93.
MR 0885719 |
Zbl 0624.35032
[135] M. Fuchs, G. Li:
Global gradient bounds for relaxed variational problems. Manuscr. Math. 92 (1997), 287–302.
MR 1437505 |
Zbl 0892.49027
[136] M. Fuchs, G. Mingione:
Full $C^{1,\alpha }$-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102 (2000), 227–250.
MR 1771942
[137] M. Fuchs, G. A. Seregin:
Some remarks on non-Newtonian fluids including nonconvex perturbations of the Bingham and Powell-Eyring model for viscoplastic fluids. Math. Models Methods Appl. Sci. 7 (1997), 405–433.
MR 1443793
[138] M. Fuchs, G. A. Seregin:
A regularity theory for variational integrals with $L\ln L$-growth. Calc. Var. Partial Differ. Equ. 6 (1998), 171–187.
MR 1606481
[139] M. Fuchs, G. A. Seregin:
Hölder continuity for weak extremals of some two-dimensional variational problems related to nonlinear elasticity. Adv. Math. Sci. Appl. 7 (1997), 413–425.
MR 1454674
[140] M. Fuchs, G. A. Seregin:
Partial regularity of the deformation gradient for some model problems in nonlinear two-dimensional elasticity. St. Petersbg. Math. J. 6 (1995), 1229–1248.
MR 1322123
[141] N. Fusco:
Quasiconvexity and semicontinuity for higher-order multiple integrals. Ric. Mat. 29 (1980), 307–323.
MR 0632213
[142] N. Fusco, J. E. Hutchinson:
$C^{1,\alpha }$-partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1986), 121–143.
MR 0808684
[143] N. Fusco, J. E. Hutchinson:
Partial regularity for minimisers of certain functionals having nonquadratic growth. Ann. Mat. Pura Appl., IV. Ser. 155 (1989), 1–24.
MR 1042826
[144] N. Fusco, J. E. Hutchinson:
Partial regularity in problems motivated by nonlinear elasticity. SIAM J. Math. Anal. 22 (1991), 1516–1551.
MR 1129398
[145] N. Fusco, J. E. Hutchinson:
Partial regularity and everywhere continuity for a model problem from non-linear elasticity. J. Aust. Math. Soc., Ser. A 57 (1994), 158–169.
MR 1288671
[146] N. Fusco, C. Sbordone:
Higher integrability from reverse Jensen inequalities with different supports. In: Partial Differential Equations and the Calculus of Variations. Essays in Honor of Ennio De Giorgi, Birkhäuser-Verlag, Boston, 1989, pp. 541–562.
MR 1034020
[147] N. Fusco, C. Sbordone:
Local boundedness of minimizers in a limit case. Manuscr. Math. 69 (1990), 19–25.
MR 1070292
[148] N. Fusco, C. Sbordone:
Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions. Commun. Pure Appl. Math. 43 (1990), 673–683.
MR 1057235
[149] N. Fusco, C. Sbordone:
Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equations 18 (1993), 153–167.
MR 1211728
[150] F. W. Gehring:
The $L^p$-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 (1973), 265–277.
MR 0402038
[151] M. Giaquinta:
A counter-example to the boundary regularity of solutions to quasilinear systems. Manuscr. Math. 24 (1978), 217–220.
MR 0492658
[152] M. Giaquinta:
Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies 105. Princeton University Press, Princeton, 1983.
MR 0717034
[153] M. Giaquinta:
Direct methods for regularity in the calculus of variations. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France seminar, Vol. VI (Paris, 1982/1983). Res. Notes in Math. 109, Pitman, Boston, 1984, pp. 258–274.
MR 0772245 |
Zbl 0553.49011
[154] M. Giaquinta:
The problem of the regularity of minimizers. In: Proceedings of the International Congress of Mathematicians, Vol. 2 (Berkeley, California, 1986), Amer. Math. Soc., Providence, 1987, pp. 1072–1083.
MR 0934310 |
Zbl 0667.49029
[155] M. Giaquinta:
Growth conditions and regularity. A counterexample. Manuscr. Math. 59 (1987), 245–248.
MR 0905200 |
Zbl 0638.49005
[156] M. Giaquinta:
Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics. Birkhäuser-Verlag, Basel, 1993.
MR 1239172
[157] M. Giaquinta, E. Giusti:
On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31–46.
MR 0666107
[158] M. Giaquinta, E. Giusti:
Differentiability of minima of nondifferentiable functionals. Invent. Math. 72 (1983), 285–298.
MR 0700772
[159] M. Giaquinta, E. Giusti:
Global $C^{1,\alpha }$-regularity for second order quasilinear elliptic equations in divergence form. J. Reine Angew. Math. 351 (1984), 55–65.
MR 0749677
[160] M. Giaquinta, G. Modica:
Almost-everywhere regularity for solutions of nonlinear elliptic systems. Manuscr. Math. 28 (1979), 109–158.
MR 0535699
[161] M. Giaquinta, G. Modica:
Regularity results for some classes of higher order nonlinear elliptic systems. J. Reine Angew. Math. 311/312 (1979), 145–169.
MR 0549962
[162] M. Giaquinta, G. Modica:
Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscr. Math. 57 (1986), 55–99.
MR 0866406
[163] M. Giaquinta, M. Struwe:
On the partial regularity of weak solutions on nonlinear parabolic systems. Math. Z. 179 (1982), 437–451.
MR 0652852
[164] D. Gilbarg, N. S. Trudinger:
Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-Heidelberg-New York, 1977.
MR 0473443
[165] E. Giusti:
Direct methods in the calculus of variations. World Scientific, Singapore, 2003.
MR 1962933 |
Zbl 1028.49001
[166] E. Giusti, M. Miranda:
Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni. Boll. Unione Mat. Ital., IV. Ser. 1 (1968), 219–226. (Italian)
MR 0232265
[167] E. Giusti, M. Miranda:
Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal. 31 (1968), 173–184. (Italian)
MR 0235264
[168] M. Gromov:
Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1986.
MR 0864505
[169] J. F. Grotowski:
Boundary regularity for nonlinear elliptic systems. Calc. Var. Partial Differ. Equ. 15 (2002), 353–388.
MR 1938819 |
Zbl 1148.35315
[170] J. F. Grotowski:
Boundary regularity for quasilinear elliptic systems. Commun. Partial Differ. Equations 27 (2002), 2491-2512.
MR 1944037 |
Zbl 1129.35352
[171] C. Hamburger:
Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 431 (1992), 7–64.
MR 1179331 |
Zbl 0776.35006
[172] C. Hamburger:
Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl., IV. Ser. 169 (1995), 321–354.
MR 1378480 |
Zbl 0852.35031
[173] C. Hamburger:
Partial regularity for minimizers of variational integrals with discontinuous integrands. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 13 (1996), 255–282.
MR 1395672 |
Zbl 0863.35022
[174] C. Hamburger:
Partial boundary regularity of solutions of nonlinear superelliptic systems. (to appear).
MR 2310958
[175] C. Hamburger:
Optimal regularity of minimzers of quasiconvex variational integrals. ESAIM Control Optim. Calc. Var (to appear).
MR 2351395
[176] W. Hao, S. Leonardi, and J. Nečas:
An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 23 (1996), 57–67.
MR 1401417
[177] R. M. Hardt:
Singularities of harmonic maps. Bull. Am. Math. Soc., New Ser. 34 (1997), 15–34.
MR 1397098 |
Zbl 0871.58026
[178] R. M. Hardt, F. G. Lin, and C. Y. Wang:
The $p$-energy minimality of $x/|x|$. Commun. Anal. Geom. 6 (1998), 141–152.
MR 1619840
[179] P. Harjulehto, P. Hästö, and M. Koskenoja:
The Dirichlet energy integral on intervals in variable exponent Sobolev spaces. Z. Anal. Anwend. 22 (2003), 911–923.
MR 2036936
[180] P. Hästö:
Counter-examples of regularity in variable exponent Sobolev spaces. In: The $p$-harmonic Equation and Recent Advances in Analysis. Contemp. Math. 370, P. Poggi-Corradini (ed.), Amer. Math. Soc., Providence, 2005, pp. 133–143.
MR 2126704 |
Zbl 1084.46025
[181] J. Heinonen, T. Kilpeläinen, and O. Martio:
Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1993.
MR 1207810
[182] S. Hildebrandt, H. Kaul, and K.-O. Widman:
An existence theorem for harmonic mappings of Riemanninan manifolds. Acta Math. 138 (1977), 1–16.
MR 0433502
[183] S. Hildebrandt, K.-O. Widman:
Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975), 67–86.
MR 0377273
[184] M.-C. Hong:
Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl., IV. Ser. 149 (1987), 311–328.
MR 0932791 |
Zbl 0648.49008
[185] M.-C. Hong:
Some remarks on the minimizers of variational integrals with nonstandard growth conditions. Boll. Unione Mat. Ital., VII. Ser., A 6 (1992), 91–101.
MR 1164739
[186] M.-C. Hong:
On the minimality of the $p$-harmonic map $\frac{x}{|x|}\: B^ n\rightarrow S^ {n-1}$. Calc. Var. Partial Differ. Equ. 13 (2001), 459–468.
MR 1867937 |
Zbl 1002.94020
[187] P.-A. Ivert:
Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung. Manuscr. Math. 30 (1979), 53–88. (German)
MR 0552363 |
Zbl 0429.35033
[188] P.-A. Ivert: Partial regularity of vector valued functions minimizing variational integrals. Preprint Univ. Bonn, 1982.
[189] T. Iwaniec:
Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators. Stud. Math. 75 (1983), 293–312.
MR 0722254
[190] T. Iwaniec:
$p$-harmonic tensors and quasiregular mappings. Ann. Math. 136 (1992), 589–624.
MR 1189867 |
Zbl 0785.30009
[191] T. Iwaniec:
The Gehring lemma. In: Quasiconformal Mappings and Analysis, Ann Arbor, 1995, P. Duren (ed.), Springer-Verlag, New York, 1998, pp. 181–204.
MR 1488451 |
Zbl 0888.30017
[192] T. Iwaniec, G. Martin:
Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2001.
MR 1859913
[193] T. Iwaniec, C. Sbordone:
Quasiharmonic fields. Ann. Inst. Henri Poincaré, Anal. Non Linèaire 18 (2001), 519–572.
MR 1849688
[194] O. John, J. Malý, and J. Stará:
Nowhere continuous solutions to elliptic systems. Commentat. Math. Univ. Carol. 30 (1989), 33–43.
MR 0995699
[195] J. Jost, M. Meier:
Boundary regularity for minima of certain quadratic functionals. Math. Ann. 262 (1983), 549–561.
MR 0696525
[196] V. Kokilashvili, S. Samko:
Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Rev. Mat. Iberoam. 20 (2004), 493–515.
MR 2073129
[197] J. Kinnunen:
Sharp Results on Reverse Hölder Inequalities. Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes No 95, Suomalainen Tiedeakatemia, Helsinki, 1994.
MR 1283432 |
Zbl 0816.26008
[198] J. Kinnunen, J. L. Lewis:
Higher integrability for parabolic systems of $p$-Laplacian type. Duke Math. J. 102 (2000), 253–271.
MR 1749438
[199] J. Kinnunen, S. Zhou:
A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equations 24 (1999), 2043–2068.
MR 1720770
[200] B. Kirchheim, S. Müller, and V. Šverák:
Studying nonlinear pde by geometry in matrix space. In: Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrandt (ed.), Springer-Verlag, Berlin, 2003, pp. 347–395.
MR 2008346
[201] A. Koshelev:
Regularity Problem for Quasilinear Elliptic and Parabolic Systems. Lecture Notes in Mathematics 1614. Springer-Verlag, Berlin, 1995.
MR 1442954
[202] J. Kristensen:
On the non-locality of quasiconvexity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16 (1999), 1–13.
MR 1668552 |
Zbl 0932.49015
[203] J. Kristensen:
Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999), 653–710.
MR 1686943 |
Zbl 0924.49012
[204] J. Kristensen, G. Mingione:
The singular set of $\omega $-minima. Arch. Ration. Mech. Anal. 177 (2005), 93–114.
MR 2187315
[205] J. Kristensen, G. Mingione:
Non-differentiable functionals and singular sets of minima. C. R. Acad. Sci. Paris 340 (2005), 93–98.
MR 2112048
[206] J. Kristensen, G. Mingione:
The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006), 331–398.
MR 2214961
[207] J. Kristensen, G. Mingione:
The singular set of Lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal (to appear).
MR 2299766
[208] J. Kristensen, G. Mingione: The singular set of solutions to elliptic problems with rough coefficients. In preparation.
[209] J. Kristensen, A. Taheri:
Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003), 63–89.
MR 2012647
[210] M. Kronz:
Quasimonotone systems of higher order. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 6 (2003), 459–480.
MR 1988216
[211] M. Kronz:
Boundary regularity for almost minimizers of quasiconvex variational problems. Nonlinear Differ. Equations Appl. 12 (2005), 351–382.
MR 2186336 |
Zbl 1116.49019
[212] M. Kronz: Habilitation Thesis. University of Erlangen-Nürneberg, Erlangen, 2006.
[213] O. A. Ladyzhenskaya, N. N. Ural’tseva:
Linear and Quasilinear Elliptic Equations. Mathematics in Science and Engineering 46. Academic Press, New York-London, 1968.
MR 0244627
[214] O. A. Ladyzhenskaya, N. N. Ural’tseva:
Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations. Commun. Pure Appl. Math. Ser. IX 23 (1970), 677–703.
MR 0265745
[215] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, Vol. 23. Amer. Math. Soc., Providence, 1968.
[216] F. Leonetti:
Maximum principle for vector-valued minimizers of some integral functionals. Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 51–56.
MR 1101010 |
Zbl 0729.49015
[217] F. Leonetti:
Higher differentiability for weak solutions of elliptic systems with nonstandard growth conditions. Ric. Mat. 42 (1993), 101–122.
MR 1283808 |
Zbl 0855.35022
[218] F. Leonetti:
Higher integrability for minimizers of integral functionals with nonstandard growth. J. Differ. Equations 112 (1994), 308–324.
MR 1293473 |
Zbl 0813.49030
[219] F. Leonetti:
Regularity results for minimizers of integral functionals with nonstandard growth. Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 425–429.
MR 1366070 |
Zbl 0851.49025
[220] F. Leonetti:
Pointwise estimates for a model problem in nonlinear elasticity. Forum Mathematicum 18 (2006), 529–535.
MR 2237933 |
Zbl 1125.49029
[221] F. Leonetti, V. Nesi:
Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton. J. Math. Pures Appl. 76 (1997), 109–124.
MR 1432370
[222] G. M. Lieberman:
Gradient estimates for a class of elliptic systems. Ann. Mat. Pura Appl., IV. Ser. 164 (1993), 103–120.
MR 1243951 |
Zbl 0819.35019
[223] G. M. Lieberman:
The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equations 16 (1991), 311–361.
MR 1104103 |
Zbl 0742.35028
[224] G. M. Lieberman:
On the regularity of the minimizer of a functional with exponential growth. Commentat. Math. Univ. Carol. 33 (1992), 45–49.
MR 1173745 |
Zbl 0776.49026
[225] G. M. Lieberman:
Gradient estimates for a new class of degenerate elliptic and parabolic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 21 (1994), 497–522.
MR 1318770 |
Zbl 0839.35018
[226] G. M. Lieberman:
Gradient estimates for anisotropic elliptic equations. Adv. Differ. Equ. 10 (2005), 767–182.
MR 2152352 |
Zbl 1144.35388
[227] P. Lindqvist:
On the definition and properties of $p$-superharmonic functions. J. Reine Angew. Math. 365 (1986), 67–79.
MR 0826152 |
Zbl 0572.31004
[228] J.- L. Lions:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969. (French)
MR 0259693 |
Zbl 0189.40603
[229] G. Lucas & co.: “Star Wars Episode 5: The empire strikes back”—Act, Darth Vader: “Come with me to the Dark Side...”. (1982).
[230] J. Malý, W. P. Ziemer:
Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, 51. Amer. Math. Soc., Providence, 1997.
MR 1461542
[231] J. J. Manfredi:
Regularity for minima of functionals with $p$-growth. J. Differ. Equations 76 (1988), 203–212.
MR 0969420 |
Zbl 0674.35008
[232] J. J. Manfredi: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. PhD. Thesis, University of Washington, St. Louis, .
[233] P. Marcellini:
On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 391–409.
MR 0868523 |
Zbl 0609.49009
[234] P. Marcellini: Un esemple de solution discontinue d’un problème variationnel dans le case scalaire. Ist. Mat. “U. Dini" No. 11, Firenze, 1987. (Italian)
[235] P. Marcellini:
Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267–284.
MR 0969900 |
Zbl 0667.49032
[236] P. Marcellini:
Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions. J. Differ. Equations 90 (1991), 1–30.
MR 1094446 |
Zbl 0724.35043
[237] P. Marcellini:
Regularity for elliptic equations with general growth conditions. J. Differ. Equations 105 (1993), 296–333.
MR 1240398 |
Zbl 0812.35042
[238] P. Marcellini:
Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 23 (1996), 1–25.
MR 1401415 |
Zbl 0922.35031
[239] P. Marcellini:
Regularity for some scalar variational problems under general growth conditions. J. Optimization Theory Appl. 90 (1996), 161–181.
MR 1397651 |
Zbl 0901.49030
[240] P. Marcellini: Alcuni recenti sviluppi nei problemi 19-esimo e 20-esimo di Hilbert. Boll. Unione Mat. Ital., VII. Ser., A 11 (1997), 323–352. (Italian)
[241] P. Marcellini, G. Papi:
Nonlinear elliptic systems with general growth. J. Differ. Equations 221 (2006), 412–443.
MR 2196484
[242] P. Marcellini, C. Sbordone:
On the existence of minima of multiple integrals of the calculus of variations. J. Math. Pures Appl., IX. Sér. 62 (1983), 1–9.
MR 0700045
[243] E. Mascolo, G. Migliorini:
Everywhere regularity for vectorial functionals with general growth. ESAIM, Control Optim. Calc. Var. 9 (2003), 399–418.
MR 1988669
[244] E. Mascolo, G. Papi:
Local boundedness of minimizers of integrals of the calculus of variations. Ann. Mat. Pura Appl., IV. Ser. 167 (1994), 323–339.
MR 1313560
[245] E. Mascolo, G. Papi:
Harnack inequality for minimizers of integral functionals with general growth conditions. NoDEA, Nonlinear Differ. Equ. Appl. 3 (1996), 231–244.
MR 1385885
[246] P. Mattila:
Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Adv. Math., 44. Cambridge University Press, Cambridge, 1995.
MR 1333890
[247] V. Maz’ya:
Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients. Funct. Anal. Appl. 2 (1968), 230–234.
MR 0237946
[248] G. Mingione:
The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal. 166 (2003), 287–301.
MR 1961442 |
Zbl 1142.35391
[249] G. Mingione:
Bounds for the singular set of solutions to non linear elliptic systems. Calc. Var. Partial Differ. Equ. 18 (2003), 373–400.
MR 2020367 |
Zbl 1045.35024
[250] G. Mingione, D. Mucci:
Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration. SIAM J. Math. Anal. 36 (2005), 1540–1579.
MR 2139562
[251] G. Mingione, F. Siepe:
Full $C^{1,\alpha }$-regularity for minimizers of integral functionals with $L\log L$-growth. Z. Anal. Anwend. 18 (1999), 1083–1100.
MR 1736253
[252] C. B. Morrey: Review to [77]. Mathematical Reviews MR0093649 (20 #172).
[253] C. B. Morrey:
Second order elliptic equations in several variables and Hölder continuity. Math. Z. 72 (1959), 146–164.
MR 0120446 |
Zbl 0094.07802
[254] C. B. Morrey:
Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2 (1952), 25–53.
MR 0054865 |
Zbl 0046.10803
[255] C. B. Morrey:
Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften, 130. Springer-Verlag, Berlin-Heidelberg-New York, 1966.
MR 0202511
[256] C. B. Morrey:
Partial regularity results for non-linear elliptic systems. J. Math. Mech. 17 (1968), 649–670.
MR 0237947 |
Zbl 0175.11901
[257] G. Moscariello, L. Nania:
Hölder continuity of minimizers of functionals with nonstandard growth conditions. Ric. Mat. 40 (1991), 259–273.
MR 1194158
[258] J. Moser:
A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13 (1960), 457–468.
MR 0170091 |
Zbl 0111.09301
[259] J. Moser:
On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math. 14 (1961), 577–591.
MR 0159138 |
Zbl 0111.09302
[260] J. Moser:
A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17 (1964), 101–134.
MR 0159139 |
Zbl 0149.06902
[261] S. Müller:
Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Math., 1713, S. Hildebrandt (ed.), Springer-Verlag, Berlin, 1999, pp. 85–210.
MR 1731640
[262] S. Müller, V. Šverák:
Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157 (2003), 715–742.
MR 1983780
[263] J. Musielak:
Orlicz spaces and Modular spaces. Lecture Notes in Mathematics, 1034. Springer-Verlag, Berlin, 1983.
MR 0724434
[264] J. Nash:
Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80 (1958), 931–954.
MR 0100158 |
Zbl 0096.06902
[265] J. Nečas:
Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity. In: Theor. Nonlin. Oper., Constr. Aspects. Proc. 4th Int. Summer School, Akademie-Verlag, Berlin, 1975, pp. 197–206.
MR 0509483
[266] J. Nečas, O. John, and J. Stará:
Counterexample to the regularity of weak solution of elliptic systems. Commentat. Math. Univ. Carol. 21 (1980), 145–154.
MR 0566246
[267] L. Nirenberg:
Remarks on strongly elliptic partial differential equations. Commun. Pure Appl. Math. 8 (1955), 649–675.
MR 0075415 |
Zbl 0067.07602
[268] D. Phillips:
On one-homogeneous solutions to elliptic systems in two dimensions. C. R., Math., Acad. Sci. Paris 335 (2002), 39–42.
MR 1920431 |
Zbl 1006.35031
[269] L. Piccinini, S. Spagnolo:
On the Hölder continuity of solutions of second order elliptic equations in two variables. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 391–402.
MR 0361422
[270] K. R. Rajagopal, T. Růžička: Mathematical modeling of electrorheological materials. Contin. Mech. and Thermodyn. 13 (2001), 59–78.
[271] M. M. Rao, Z. D. Ren:
Theory of Orlicz spaces. Pure and Applied Mathematics, 146 Marcel Dekker, New York, 1991.
MR 1113700
[272] J.-P. Raymond:
Lipschitz regularity of solutions of some asymptotically convex problems. Proc. R. Soc. Edinb., Sect. A 117 (1991), 59–73.
MR 1096219 |
Zbl 0725.49012
[273] T. Rivière:
Everywhere discontinuous harmonic maps into spheres. Acta Math. 175 (1995), 197–226.
MR 1368247
[274] M. Růžička:
Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, 1748. Springer-Verlag, Berlin, 2000.
MR 1810360
[275] A. Salli:
On the Minkowski dimension of strongly porous fractal sets in ${R}^n$. Proc. Lond. Math. Soc., III. Ser. 62 (1991), 353–372.
MR 1085645
[276] S. Samko:
On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16 (2005), 461–482.
MR 2138062 |
Zbl 1069.47056
[277] C. Sbordone:
Rearrangement of functions and reverse Hölder inequalities. Ennio De Giorgi colloq., H. Poincaré Inst., Paris, 1983. Res. Notes Math. 125 (1985), 139–148.
MR 0909714
[278] R. Schoen, K. Uhlenbeck:
A regularity theory for harmonic maps. J. Differ. Geom. 17 (1982), 307–335.
MR 0664498
[279] J. Serrin:
Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964), 247–302.
MR 0170096 |
Zbl 0128.09101
[280] L. Simon:
Global estimates of Hölder continuity for a class of divergence-form elliptic equations. Arch. Ration. Mech. Anal. 56 (1974), 253–272.
MR 0352696
[281] L. Simon:
Interior gradient bounds for non-uniformly elliptic equations. Indiana Univ. Math. J. 25 (1976), 821–855.
MR 0412605
[282] L. Simon:
Rectifiability of the singular set of energy minimizing maps. Calc. Var. Partial Differ. Equ. 3 (1995), 1–65.
MR 1384836 |
Zbl 0818.49023
[283] L. Simon:
Lectures on Regularity and Singularities of Harmonic Maps. Birkhäuser-Verlag, Basel-Boston-Berlin, 1996.
MR 1399562
[284] J. Souček:
Singular solutions to linear elliptic systems. Commentat. Math. Univ. Carol. 25 (1984), 273–281.
MR 0768815
[285] G. Stampacchia:
Problemi al contorno ellitici, con dati discontinui, dotati di soluzionie hölderiane. Ann. Mat. Pura Appl., IV. Ser. 51 (1960), 1–37. (Italian)
MR 0126601
[286] G. Stampacchia:
Hilbert’s twenty-third problem: extensions of the calculus of variations. In: Mathematical developments arising from Hilbert problems. Proc. Symp. Pure Math. 28, De Kalb 1974, , , 1976, pp. 611–628.
MR 0428150 |
Zbl 0345.49002
[287] P. Sternberg, G. Williams, and W. P. Ziemer:
Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992), 35–60.
MR 1172906
[288] E. W. Stredulinsky:
Higher integrability from reverse Hölder inequalities. Indiana Univ. Math. J. 29 (1980), 407–413.
MR 0570689 |
Zbl 0442.35064
[289] B. Stroffolini:
Global boundedness of solutions of anisotropic variational problems. Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 345–352.
MR 1138548 |
Zbl 0754.49026
[290] V. Šverák, X. Yan:
A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differ. Equ. 10 (2000), 213–221.
MR 1756327
[291] V. Šverák, X. Yan:
Non-Lipschitz minimizers of smooth uniformly convex variational integrals. Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276.
MR 1946762
[292] L. Székelyhidi, Jr.:
The regularity of critical points of polyconvex functionals. Arch. Ration. Mech. Anal. 172 (2004), 133–152.
MR 2048569 |
Zbl 1049.49017
[293] L. Székelyhidi, Jr.:
Rank-one convex hulls in $\mathbb{R}^{2\times 2}$. Calc. Var. Partial Differ. Equ. 22 (2005), 253–281.
MR 2118899
[295] Qi Tang:
Regularity of minimizers of nonisotropic integrals of the calculus of variations. Ann. Mat. Pura Appl., IV. Ser. 164 (1993), 77–87.
MR 1243949
[296] N. S. Trudinger:
On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20 (1967), 721–747.
MR 0226198 |
Zbl 0153.42703
[297] N. S. Trudinger:
Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. 21 (1968), 205–226.
MR 0226168 |
Zbl 0159.39303
[298] N. S. Trudinger:
On the regularity of generalized solutions of linear, non-uniformly elliptic equations. Arch. Ration. Mech. Anal. 42 (1971), 50–62.
MR 0344656 |
Zbl 0218.35035
[299] N. S. Trudinger:
Linear elliptic operators with measurable coefficients. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 27 (1973), 265–308.
MR 0369884 |
Zbl 0279.35025
[300] N. S. Trudinger, X.-J. Wang:
On the weak continuity of elliptic operators and applications to potential theory. Amer. J. Math. 124 (2002), 369–410.
MR 1890997
[301] K. Uhlenbeck:
Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977), 219–240.
MR 0474389
[302] N. N. Ural’tseva:
Degenerate quasilinear elliptic systems. Semin. in Mathematics, V. A. Steklov Math. Inst., Leningrad 7 (1968), 83–99.
MR 0244628
[303] N. N. Ural’tseva, A. B. Urdaletova: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations. Vestn. Leningr. Univ., Math. 16 (1984), 263–270.
[304] K.-O. Widman:
Hölder continuity of solutions of elliptic systems. Manuscr. Math. 5 (1971), 299–308.
MR 0296484 |
Zbl 0223.35044
[305] J. Wolf:
Partial regularity of weak solutions to nonlinear elliptic systems satisfying a Dini condition. Z. Anal. Anwend. 20 (2001), 315–330.
MR 1846604 |
Zbl 1163.35329
[306] K.-W. Zhang:
On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form. In: Partial Differential Equations, Proc. Symp. Tianjin/China, 1986. Lect. Notes Math. 1306, Springer-Verlag, Berlin, 1988, pp. 262–277.
MR 1032785 |
Zbl 0672.35026
[307] V. V. Zhikov:
Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675–710.
MR 0864171 |
Zbl 0599.49031
[310] V. V. Zhikov:
Meyer-type estimates for solving the nonlinear Stokes system. Differ. Equations 33 (1997), 108–115.
MR 1607245
[311] V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik:
Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin, 1994.
MR 1329546