[1] I. Babuška, J. Osborn:
Eigenvalue problems. Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part I), P. G. Ciarlet, J. L. Lions (eds.), North-Holland Publ., Amsterdam, 1991, pp. 641–787.
MR 1115240
[2] M. Bercovier, O. Pironneau:
Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979), 211–224.
DOI 10.1007/BF01399555 |
MR 0549450
[4] D. Boffi, F. Brezzi, and L. Gastaldi:
On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69 (2000), 121–140.
DOI 10.1090/S0025-5718-99-01072-8 |
MR 1642801
[5] D. Boffi, F. Brezzi, and L. Gastaldi:
On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25 (1997), 131–154.
MR 1655512
[6] F. Brezzi, M. Fortin:
Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol. 15. Springer-Verlag, New York, 1991.
MR 1115205
[7] B. M. Brown, E. B. Davies, P. K. Jimack, and M. D. Mihajlović:
A numerical investigation of the solution of a class of fourth-order eigenvalue problems. Proc. R. Soc. Lond. A 456 (2000), 1505–1521.
DOI 10.1098/rspa.2000.0573 |
MR 1808762
[8] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland Publ., Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[9] P. G. Ciarlet, P.-A. Raviart:
A mixed finite element method for the biharmonic equation. Aspects finite Elem. partial Differ. Equat., Proc. Symp. Madison, C. de Boor (ed.), Academic Press, New York, 1974, pp. 125–145.
MR 0657977
[10] V. Girault, P.-A. Raviart:
Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin, 1986.
MR 0851383
[11] R. Glowinski, O. Pironneau:
On a mixed finite element approximation of the Stokes problem. I: Convergence of the approximate solution. Numer. Math. 33 (1979), 397–424.
DOI 10.1007/BF01399323 |
MR 0553350
[12] V. Heuveline, R. Rannacher:
A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001), 107–138.
DOI 10.1023/A:1014291224961 |
MR 1887731
[14] K. Ishihara:
A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 399–414.
DOI 10.2977/prims/1195189071 |
MR 0509196
[15] M. Křížek:
Comforming finite element approximation of the Stokes problem. Banach Cent. Publ. 24 (1990), 389–396.
DOI 10.4064/-24-1-389-396
[17] Q. Lin, J. Lin: Finite Element Methods: Accuracy and Improvement. China Sci. Tech. Press, Beijing, 2005.
[18] Q. Lin, T. Lu:
Asymptotic expansions for finite element eigenvalues and finite element solution. Bonn Math. Schr. 158 (1984), 1–10.
MR 0793412 |
Zbl 0549.65072
[19] Q. Lin, N. Yan: High Efficiency FEM Construction and Analysis. Hebei Univ. Press, , 1996.
[22] J. Osborn:
Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976), 185–197.
DOI 10.1137/0713019 |
MR 0447842 |
Zbl 0334.76010
[24] R. Rannacher:
Noncomforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33 (1979), 23–42.
DOI 10.1007/BF01396493 |
MR 0545740
[26] R. Verfürth:
Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO, Anal. Numér. 18 (1984), 175–182.
DOI 10.1051/m2an/1984180201751
[27] J. Wang, X. Ye:
Superconvergence of finite element approximations for the Stokes problem by the projection methods. SIAM J. Numer. Anal. 39 (2001), 1001–1013.
DOI 10.1137/S003614290037589X |
MR 1860454