Previous |  Up |  Next

Article

Keywords:
numerical analysis; convection-diffusion problem; boundary layer; uniform convergence
Summary:
For convection-diffusion problems with exponential layers, optimal error estimates for linear finite elements on Shishkin-type meshes are known. We present the first optimal convergence result in an energy norm for a Bakhvalov-type mesh.
References:
[1] A. S. Bakhvalov: On the optimization of methods for solving boundary value problems with boundary layers. Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 841–859. (Russian) MR 0255066
[2] T. Linss: Layer-adapted meshes for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 192 (2003), 1061–1105. DOI 10.1016/S0045-7825(02)00630-8 | MR 1960975 | Zbl 1022.76036
[3] M. Dobrowolski: Finite Elemente. University textbook of Würzburg, 1998.
[4] N. Kopteva, M.  Stynes: Approximation of derivatives in a convection-diffusion two-point boundary value problem. Appl. Numer. Math. 39 (2001), 47–60. DOI 10.1016/S0168-9274(01)00051-4 | MR 1855164
[5] H.-G. Roos, T.  Linss: Sufficient conditions for uniform convergence on layer-adapted grids. Computing 63 (1999), 27–45. DOI 10.1007/s006070050049 | MR 1702159
[6] H.-G. Roos, M. Stynes, L.  Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems. Springer-Verlag, Berlin, 1996. MR 1477665
[7] W. W. Shaidurov, B. M. Bagaev, and E. D.  Karepova: Numerical Methods for Problems with Boundary Layers  II. Nauka, Novosibirsk, 2002. (Russian) MR 2029041
[8] M. Stynes, E.  O’Riordan: A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J.  Math. Anal. Appl. 214 (1997), 36–54. DOI 10.1006/jmaa.1997.5581 | MR 1645503
Partner of
EuDML logo