[1] P. Cerone, S. S. Dragomir:
Midpoint-type rules from an inequalities point of view. In: Handbook of Analytic-Computational Methods in Applied Mathematics, G. A. Anastassiou (ed.), CRC Press, 2000, pp. 135–200.
MR 1769925
[2] P. Cerone, S. S. Dragomir:
New bounds for the three-point rule involving the Riemann-Stieltjes integral. In: Advances in Statistics, Combinatorics and Related Areas, C. Gulati et al. (eds.), World Scientific, London, 2002, pp. 53–62.
MR 2063836
[3] P. Cerone, S. S. Dragomir:
Approximation of the Stieltjes integral and applications in numerical integration. RGMIA Res. Rep. Coll. 6 (2003), Article 10 [Online:
http://rgmia.vu.edu.au/v6n1.html]
[4] S. S. Dragomir:
On the Ostrowski’s integral inequality for mappings with bounded variation and applications. Math. Inequal. Appl. 4 (2001), 59–66.
MR 1809841 |
Zbl 1016.26017
[5] S. S. Dragomir, I. Fedotov:
An inequality of Grüss’ type for Riemann-Stieltjes integral and applications for special means. Tamkang J. Math. 29 (1998), 286–292.
MR 1648534
[6] S. S. Dragomir, I. Fedotov:
A Grüss type inequality for mappings of bounded variation and applications to numerical analysis. Nonlinear Funct. Anal. Appl. 6 (2001), 425–438.
MR 1875552
[7] S. S. Dragomir, A. Kalam: An approximation of the Fourier Sine transform via Grüss type inequalities and applications for electrical circuits. J. KSIAM 6 (2002), 33–45.
[8]
Ostrowski Type Inequalities and Applications in Numerical Integration. S. S. Dragomir, Th. M. Rassias (eds.), Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.
MR 1928290 |
Zbl 0992.26002
[9] I. N. Sneddon:
Fourier Transforms. McGraw-Hill, New York-Toronto-London, 1987.
MR 0041963