[1] B. Aghezzaf:
Second-order necessary conditions of the Kuhn-Tucker type in multiobjective programming problems. Control Cybern. 28 (1999), 213–224.
MR 1752558 |
Zbl 0946.90075
[2] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin:
Optimal Control. Consultants Bureau, New York, 1987 (Russian original: Optimal’noe upravlenie. Publ. Nauka, Moscow, 1979).
MR 0924574
[5] E. Bednarczuk, W. Song:
PC points and their application to vector optimization. PLISKA, Stud. Math. Bulg. 12 (1998), 21–30.
MR 1686508
[6] S. Bolintinéanu, M. El Maghri:
Second-order efficiency conditions and sensitivity of efficient points. J. Optimization Theory Appl. 98 (1998), 569–592.
DOI 10.1023/A:1022619928631 |
MR 1640141
[8] G. P. Crespi, I. Ginchev, M. Rocca:
Minty variational inequality, efficiency and proper efficiency. Vietnam J. Math. 32 (2004), 95–107.
MR 2052725
[9] V. F. Demyanov, A. M. Rubinov:
Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main, 1995.
MR 1325923
[11] I. Ginchev, A. Guerraggio, M. Rocca:
Equivalence on $(n+1)$-th order Peano and usual derivatives for $n$-convex functions. Real Anal. Exch. 25 (2000), 513–520.
MR 1779334
[13] I. Ginchev, A. Guerraggio, M. Rocca:
First-order conditions for $C^{0,1}$ constrained vector optimization. In: Variational Analysis and Applications, F. Giannessi, A. Maugeri (eds.), Springer-Verlag, New York, 2005, pp. 427–450.
MR 2159985
[14] I. Ginchev, A. Hoffmann:
Approximation of set-valued functions by single-valued one. Discuss. Math., Differ. Incl., Control Optim. 22 (2002), 33–66.
DOI 10.7151/dmdico.1031 |
MR 1961115
[15] A. Guerraggio, D. T. Luc:
Optimality conditions for $C^{1,1}$ vector optimization problems. J. Optimization Theory Appl. 109 (2001), 615–629.
DOI 10.1023/A:1017519922669 |
MR 1835076
[16] J.-B. Hiriart-Urruty, J.-J. Strodiot, V. Hien Nguen:
Generalized Hessian matrix and second order optimality conditions for problems with $C^{1,1}$ data. Appl. Math. Optimization 11 (1984), 43–56.
DOI 10.1007/BF01442169 |
MR 0726975
[17] J.-B. Hiriart-Urruty:
New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France 60 (1979), 57–85.
MR 0562256 |
Zbl 0469.90071
[20] L. Liu:
The second-order conditions of nondominated solutions for $C^{1,1}$ generalized multiobjective mathematical programming. Syst. Sci. Math. Sci. 4 (1991), 128–138.
MR 1119288
[21] L. Liu, M. Křížek:
The second order optimality conditions for nonlinear mathematical programming with $C^{1,1}$ data. Appl. Math. 42 (1997), 311–320.
DOI 10.1023/A:1023068513188 |
MR 1453935
[22] L. Liu, P. Neittaanmäki, M. Křížek:
Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data. Appl. Math. 45 (2000), 381–397.
DOI 10.1023/A:1022272728208 |
MR 1777017
[23] D. T. Luc:
Theory of Vector Optimization. Springer Verlag, Berlin, 1988.
Zbl 0654.90082
[25] E. Miglierina:
Characterization of solutions of multiobjective optimization problems. Rendiconti Circ. Mat. Palermo 50 (2001), 153–164.
DOI 10.1007/BF02843924 |
MR 1825676
[27] G. Peano: Sulla formola di Taylor. Atti Accad. Sci. Torino 27 (1891), 40-46.
[31] X. Q. Yang, V. Jeyakumar:
Generalized second-order directional derivatives and optimization with $C^{1,1}$ functions. Optimization 26 (1992), 165–185.
DOI 10.1080/02331939208843851 |
MR 1236606
[33] C. Zalinescu:
On two notions of proper efficiency. In: Optimization in Mathematical Physics, Pap. 11th Conf. Methods Techniques Math. Phys., Oberwolfach, Brokowski and Martensen (eds.), Peter Lang, Frankfurt am Main, 1987.
MR 1036535 |
Zbl 0618.90089