[1] E. Alòs, J. A. León, and D. Nualart:
Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than $1/2$. Stochastic Processes Appl. 86 (2000), 121–139.
MR 1741199
[3] W. Dai, C. C. Heyde:
Itô’s formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stochastic Anal. 9 (1996), 439–448.
DOI 10.1155/S104895339600038X |
MR 1429266
[5] R. M. Dudley, R. Norvaiša: An Introduction to $p$-Variation and Young Integrals Concentrated Advanced Course. Maphysto, Centre for Mathematical Physics and Stochastics, University of Aarhus, Aarhus, 1999.
[6] T. E. Duncan, Y. Hu, B. Pasik-Duncan:
Stochastic calculus for fractional Brownian motion I: Theory. SIAM J. Control Optimization 38 (2000), 582–612.
DOI 10.1137/S036301299834171X |
MR 1741154
[7] T. E. Duncan, B. Pasik-Duncan, and B. Maslowski:
Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch. Dyn. 2 (2002), 225–250.
DOI 10.1142/S0219493702000340 |
MR 1912142
[9] R. A. Horn, C. R. Johnson:
Matrix Analysis. Cambridge University Press, Cambridge, 1985.
MR 0832183
[10] H. E. Hurst: Long-term storage capacity in reservoirs. Trans. Amer. Soc. Civil Eng. 116 (1951), 400–410.
[11] H. E. Hurst: Methods of using long-term storage in reservoirs. Proc. Inst. Civil Engineers, Part I (1956), 519–590.
[13] A. N. Kolmogoroff:
Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Dokl.) Acad. Sci. URSS (N.S.) 26 (1940), 115–118.
MR 0003441
[15] B. Mandelbrot, J. Van Ness:
Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968), 422–437.
DOI 10.1137/1010093 |
MR 0242239
[16] D. Nualart, B. Maslowski:
Evolution equations driven by a fractional Brownian motion. J. Funct. Anal (to appear).
MR 1994773
[17] D. Nualart, A. Răşcanu:
Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002), 55–81.
MR 1893308
[19] E. Lutz: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001), .