Previous |  Up |  Next

Article

Keywords:
fractional Brownian motion; Kolmogorov backwards equation; linear stochastic equation
Summary:
We consider a stochastic process $X_t^x$ which solves an equation \[ {\mathrm d}X_t^x = AX_t^x\mathrm{d}t + \Phi {\mathrm d}B^H_t,\quad X_0^x = x \] where $A$ and $\Phi $ are real matrices and $B^H$ is a fractional Brownian motion with Hurst parameter $H \in (1/2,1)$. The Kolmogorov backward equation for the function $u(t,x) = \mathbb{E} f(X^x_t)$ is derived and exponential convergence of probability distributions of solutions to the limit measure is established.
References:
[1] E. Alòs, J. A. León, and D. Nualart: Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than $1/2$. Stochastic Processes Appl. 86 (2000), 121–139. MR 1741199
[2] L. Coutin, Z. Qian: Stochastic differential equations for fractional Brownian motions. C.R. Acad. Sci. Paris 331 (2000), 75–80. DOI 10.1016/S0764-4442(00)01594-9 | MR 1780221
[3] W. Dai, C. C. Heyde: Itô’s formula with respect to fractional Brownian motion and its application. J.  Appl. Math. Stochastic Anal. 9 (1996), 439–448. DOI 10.1155/S104895339600038X | MR 1429266
[4] L. Decreusefond, A. S. Üstünel: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999), 177–214. DOI 10.1023/A:1008634027843 | MR 1677455
[5] R. M. Dudley, R. Norvaiša: An Introduction to $p$-Variation and Young Integrals Concentrated Advanced Course. Maphysto, Centre for Mathematical Physics and Stochastics, University of Aarhus, Aarhus, 1999.
[6] T. E. Duncan, Y. Hu, B. Pasik-Duncan: Stochastic calculus for fractional Brownian motion  I: Theory. SIAM J. Control Optimization 38 (2000), 582–612. DOI 10.1137/S036301299834171X | MR 1741154
[7] T. E. Duncan, B.  Pasik-Duncan, and B. Maslowski: Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch. Dyn. 2 (2002), 225–250. DOI 10.1142/S0219493702000340 | MR 1912142
[8] W. Grecksch, V. V. Anh: A parabolic stochastic differential equation with fractional Brownian motion input. Statist. Probab. Lett. 41 (1999), 337–346. DOI 10.1016/S0167-7152(98)00147-3 | MR 1666072
[9] R. A. Horn, C. R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge, 1985. MR 0832183
[10] H. E. Hurst: Long-term storage capacity in reservoirs. Trans. Amer. Soc. Civil Eng. 116 (1951), 400–410.
[11] H. E. Hurst: Methods of using long-term storage in reservoirs. Proc. Inst. Civil Engineers, Part  I (1956), 519–590.
[12] P. Cheridito, H. Kawaguchi, M. Maejima: Fractional Ornstein-Uhlenbeck processes. http://www.math.washington.edu/ ejpecp/EjpVol8/paper3.abs.html
[13] A. N. Kolmogoroff: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Dokl.) Acad. Sci. URSS (N.S.) 26 (1940), 115–118. MR 0003441
[14] K. Kubilius: The existence and uniqueness of the solution of an integral equation driven by a $p$-semimartingale of special type. Stochastic Process. Appl. 98 (2002), 289–315. DOI 10.1016/S0304-4149(01)00145-4 | MR 1887537 | Zbl 1059.60068
[15] B.  Mandelbrot, J.  Van Ness: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968), 422–437. DOI 10.1137/1010093 | MR 0242239
[16] D. Nualart, B. Maslowski: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal (to appear). MR 1994773
[17] D. Nualart, A. Răşcanu: Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002), 55–81. MR 1893308
[18] H. L.  Royden: Real Analysis. Macmillan, New York, 1963. MR 0151555 | Zbl 0121.05501
[19] E. Lutz: Fractional Langevin equation. Phys. Rev.  E 64, 051106 (2001), .
[20] M.Zähle: Integration with respect to fractal functions and stochastic calculus.  I. Probab. Theory Relat. Fields 111 (1998), 333–374. DOI 10.1007/s004400050171 | MR 1640795 | Zbl 0918.60037
[21] M. Zähle: Long range dependence, no arbitrage and the Black-Scholes formula. Stoch. Dyn. 2 (2002), 265–280. DOI 10.1142/S0219493702000406 | MR 1912144 | Zbl 1016.91053
Partner of
EuDML logo