Previous |  Up |  Next

Article

Keywords:
kinetic theory; chemical reaction; Chapman-Enskog expansion
Summary:
Starting from the Grad 13-moment equations for a bimolecular chemical reaction, Navier-Stokes-type equations are derived by asymptotic procedure in the limit of small mean paths. Two physical situations of slow and fast reactions, with their different hydrodynamic variables and conservation equations, are considered separately, yielding different limiting results.
References:
[1] C.  Cercignani: Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge, 2000. MR 1744523 | Zbl 0961.76002
[2] V.  Giovangigli: Multicomponent Flow Modeling. Birkhäuser-Verlag, Boston, 1999. MR 1713516 | Zbl 0956.76003
[3] M. N.  Kogan: Rarefied Gas Dynamics. Plenum Press, New York, 1969.
[4] C.  Cercignani: The Boltzmann Equation and its Applications. Springer-Verlag, New York, 1988. MR 1313028 | Zbl 0646.76001
[5] J. H.  Ferziger, H. G.  Kaper: Mathematical Theory of Transport Processes in Gases. North Holland, Amsterdam, 1972.
[6] S.  Takata, K.  Aoki: The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation. Transport Theory Statist. Phys. 30 (2001), 205–237. MR 1848595
[7] S.  Chapman, T. G.  Cowling: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, 1970. MR 0258399
[8] Y.  Sone: Kinetic Theory and Fluid Dynamics. Birkhäuser-Verlag, Boston, 2002. MR 1919070 | Zbl 1021.76002
[9] A.  Rossani, G.  Spiga: A note on the kinetic theory of chemically reacting gases. Physica  A 272 (1999), 563–573. DOI 10.1016/S0378-4371(99)00336-2 | MR 1730976
[10] M.  Groppi, G.  Spiga: Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas. J.  Math. Chem. 26 (1999), 197–219. DOI 10.1023/A:1019194113816
[11] I.  Müller, T.  Ruggeri: Extended Thermodynamics. Springer-Verlag, New York, 1993. MR 1269783
[12] M.  Bisi, M.  Groppi, G.  Spiga: Grad’s distribution functions in the kinetic equations for a chemical reaction. Contin. Mech. Thermodyn. 14 (2002), 207–222. DOI 10.1007/s001610100066 | MR 1896837
[13] Handbook of Mathematical Functions. M.  Abramowitz, I. A.  Stegun (eds.), Dover, New York, 1965.
[14] M.  Bisi: Kinetic equations for non-conservative interactions. PhD. Thesis, Università di Milano, 2004, in press.
[15] I.  Samohýl: Comparison of classical and rational thermodynamics of reacting fluid mixtures with linear transport properties. Collection Czechoslov. Chem. Commun. 40 (1975), 3421–3435. DOI 10.1135/cccc19753421
Partner of
EuDML logo