[1] C. Cercignani:
Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge, 2000.
MR 1744523 |
Zbl 0961.76002
[3] M. N. Kogan: Rarefied Gas Dynamics. Plenum Press, New York, 1969.
[4] C. Cercignani:
The Boltzmann Equation and its Applications. Springer-Verlag, New York, 1988.
MR 1313028 |
Zbl 0646.76001
[5] J. H. Ferziger, H. G. Kaper: Mathematical Theory of Transport Processes in Gases. North Holland, Amsterdam, 1972.
[6] S. Takata, K. Aoki:
The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation. Transport Theory Statist. Phys. 30 (2001), 205–237.
MR 1848595
[7] S. Chapman, T. G. Cowling:
The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, 1970.
MR 0258399
[10] M. Groppi, G. Spiga:
Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas. J. Math. Chem. 26 (1999), 197–219.
DOI 10.1023/A:1019194113816
[11] I. Müller, T. Ruggeri:
Extended Thermodynamics. Springer-Verlag, New York, 1993.
MR 1269783
[12] M. Bisi, M. Groppi, G. Spiga:
Grad’s distribution functions in the kinetic equations for a chemical reaction. Contin. Mech. Thermodyn. 14 (2002), 207–222.
DOI 10.1007/s001610100066 |
MR 1896837
[13] Handbook of Mathematical Functions. M. Abramowitz, I. A. Stegun (eds.), Dover, New York, 1965.
[14] M. Bisi: Kinetic equations for non-conservative interactions. PhD. Thesis, Università di Milano, 2004, in press.
[15] I. Samohýl:
Comparison of classical and rational thermodynamics of reacting fluid mixtures with linear transport properties. Collection Czechoslov. Chem. Commun. 40 (1975), 3421–3435.
DOI 10.1135/cccc19753421