[1] D. M. Bates, D. G. Watts:
Relative curvature measures of nonlinearity. J. Roy. Statist. Soc. Ser. B 42 (1980), 1–25.
MR 0567196
[4] L. Kubáček:
On a linearization of regression models. Appl. Math. 40 (1995), 61–78.
MR 1305650
[5] L. Kubáček, L. Kubáčková, J. Volaufová: Statistical Models with Linear Structures. Veda, Bratislava, 1995.
[6] L. Kubáček:
Models with a low nonlinearity. Tatra Mt. Math. Publ. 7 (1996), 149–155.
MR 1408464
[7] L. Kubáček:
Quadratic regression models. Math. Slovaca 46 (1996), 111–126.
MR 1414414
[8] L. Kubáček:
Corrections of estimators in linearized models. Acta Univ. Palack. Olomuc., Fac. Rerum Math. 37 (1998), 69–80.
MR 1690475
[9] L. Kubáček, L. Kubáčková: Regression models with a weak nonlinearity. Technical Reports. (1998), University of Stuttgart, 1–64.
[10] P. B. Patnaik:
The non-central $\chi ^2$ and $F$-distributions and their applications. Biometrika 36 (1949), 202–232.
MR 0034564
[11] A. Pázman:
Nonlinear Statistical Models. Kluwer Academic Publishers, DordrechtBoston-London and Ister Science Press, Bratislava, 1993.
MR 1254661
[12] R. Potocký, To Van Ban:
Confidence regions in nonlinear regression models. Appl. Math. 37 (1992), 29–39.
MR 1152155
[13] F. E. Satterthwaite:
An approximate distribution of estimates of variance components. Biometrics Bulletin 2 (1946), 110-114.
DOI 10.2307/3002019
[14] E. Tesaříková, L. Kubáček:
How to deal with regression models with a weak nonlinearity. Discuss. Math. Probab. Stat. 21 (2001), 21–48.
DOI 10.7151/dmps.1018 |
MR 1868926
[15] B. L. Welch:
The generalization of Student’s problem when several different population variances are involved. Biometrika 34 (1947), 28–35.
MR 0019277 |
Zbl 0029.40802