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LINEAR VERSUS QUADRATIC ESTIMATORS 

IN LINEARIZED MODELS* 
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Abstract. In nonlinear regression models an approximate value of an unknown parameter 
is frequently at our disposal. Then the linearization of the model is used and a linear 
estimate of the parameter can be calculated. Some criteria how to recognize whether a 
linearization is possible are developed. In the case that they are not satisfied, it is necessary 
to take into account either some quadratic corrections or to use the nonlinear least squares 
method. The aim of the paper is to find some criteria for an ordering linear and quadratic 
estimators. 
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1. INTRODUCTION AND NOTATION 

How to proceed in estimation of parameters in nonlinear models is a frequently 

occurring problem. There are several possibilities; to linearize the model, to use 

the nonlinear least squares method, the maximum likelihood principle, a polynomial 

estimator, etc. 

The aim of the paper is to find out some simple rules how to recognize whether the 

linearization is sufficient for the solution of the problem or whether it is necessary 

to use some quadratic corrections in order to obtain an estimator with smaller MSE 

(mean square error) than MSE of the linear estimator. Since criteria for recognizing 

the possibility of linearizing the model have been already developed (cf. [4], [6], [9]), 

the problem is what to do when such a criterion is not satisfied. 

* This work was supported by Grant No. 201/99/0327 of the Grant Agency of the Czech 
Republic and by Council of the Czech Government J 14/98: 153 100011. 
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The notation Y ~ Nn(f(/3), £ ) , (3 E R&, means the following. The ^-dimensional 
vector Y (observation vector) is random with normal distribution, its mean value 
E(Y) is f((3) where f (•) is an n-dimensional vector function of the known analytical 
form with continuous second derivatives, the A;-dimensional parameter (3 is unknown 
and can be any element of the A;-dimensional Euclidean space IR*. The covariance 
matrix var(Y) of the vector Y is given and is denoted by S . 

The linearized and quadratized approximations of this model, i.e. 

(1) Y = 5, + F<J/3 + e 

and 

(2) Y = f0 + F6{3+±Kf(6(3) + e, 

respectively, will be under consideration. Here e is an error vector, /30 is an approx­

imate value of the actual value j3* of the vector /3 and 

fo = f (A>), 

F = df(u)/du'\u=l}0, 

Kf(6(3) = (Kl(6(3),...,Kn(6l3))', 

Ki(6p) = 6(3'Fi6f3, i = l,...,n, 

Fi = d2fi(u)/dudu'\u=Po, i = l,...,n. 

R e m a r k 1.1. The vector (3o should be chosen in such a way that the inequality 

V o E - V o ^ a - a ) , 

be satisfied for a sufficiently small a. Here 

vo = F ( F ' S - 1 F ) " 1 F ' E - 1 [ y - f(/30)] 

(y is a realization of Y), x | ( l - a) is the (1 — a) quantile of the central chi-square 
distribution with k degrees of freedom. By virtue of Proposition 2.6.1 in [11] this 
ensures that /3o is an element of the confidence region for the parameter (3 with 
probability 1 — a. 

The task is to estimate a function h(-) of the form 

h(J3) = ho + h'5l3+±60'H16l3, 

where ho is a known number, h is a known k-dimensional vector and Hi is a known 
k x k symmetric matrix. 
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2. PRELIMINARIES 

In what follows the following well known statement will be useful. 

Lemma 2 .1 . Let r\ ~ Nk{n, V), h G Rfc and let A be an k x k symmetric 

matrix. Then 

var(h'r7) = h 'Vh, 

cov(h'r/, 77' A77) = 2h'VA/x, 

EtfKrj) = M 'A/i + Tr(AV), 

var^ 'Ar/) = 2 Tr(AVAV) + 4/x'AVA/x. 

P r o o f cf., e.g., in [5]. D 

In [7] a simple quadratic estimator in the model (2) is given in the form 

/J = $ - C ^ F ' E - ^ K / O J / I ) + ic^F'E-^TrtC^Fx),... ^ ( C " ^ ) ) ' , 

where 

h = A) + *& 
/̂3 = C - 1 F ' S - 1 ( Y - f 0 ) , 

/§ = A) + <*A 

C = F ' S - 1 F . 

We suppose that the rank of the matrix F i s r ( F ) = A : < n and the matrix £ is 
positive definite. 

Let 

Ъ{ß) = E{ß) -ß, P £ = F C - ^ F ' ^ - 1 , M Ş = I - P 

and 

. л/^NE-ЧMŞ-Ч/íu) 
tf(rat>(Д>) = sup < ---- — : u Є Rfc 

i - l 

í./к'/(u)E-iPГ1"/(u) 
Ä-(P")(/Зb) = sup ^ JL-І — : u e l * 

I u ' C u 
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(cf. [1]) and let x^(l—a) be the (1 — a)-quantile of the chi-square central distribution 
with k degrees of freedom. 

If the linearization region (with respect to bias) (cf. e.g. [4]) for the estimator /3, 
i.e. 

{A, + 5/3: 6(3'C6(3 < cby/xl(l -a)/K^\(3o)} 

(=> V{h' e Rk}\h'u((3)\ < cy/xlil-aWh'C-ih), 

covers the actual value P* of the parameter /3 with sufficiently high probability, 
there is no use to correct the linear estimator /3 = /30 + S0. If this situation does 
not occur, then it may be useful to use a correction of the linear estimator. The 
decision whether to realize this correction or not depends, e.g., on the mean square 
error (MSE) of the linear estimator and on the MSE of the quadratic estimator. 

In the following the aim is to find a simple rule for the above mentioned decision 
(another investigation of this situation is given in [3]). 

In order to be a little more general, the problem is formulated as follows. 
Let (2) be under consideration. The function 

h(P) = h0 + h,Sp + ^Sp'H1Sp 

is to be estimated. 

In the linearized situation, i.e. (1) and h(/3) = ho + h!Sp, the estimator is 

h(&) = h0 + h'Sp. 

Its bias is 

M/3) = ho + h'E(6$) - h{0) = ±L'hKf(6/3) - ^pHtfp = 60'Ah6p, 

where 

L ^ h ' C ^ F ' E - 1 , 

Ah = Bh — - H i . 

Thus the simplest quadratic unbiased (as far as the second order terms of 6/3 are 
concerned) estimator of the function h(-) is 

h{0) = h0 + h'Sp - SP'AhSP + T r tC- 1 Ah). 
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R e m a r k 2.1. If Hi = £ {L'h}iFi,tnen it is sufficient to use the linear estimator 
i= l 

h(P) = h(p0) + h'6/3. 
k 

Let B0,i = £ { e J C ^ F ' E - 1 } , - ! ^ and B0,fc = £ ^ B 0 f i , where e{ G R \ {e*},- = 
j = i i = i 

<5.î - (Kronecker delta). 
_ k k 

In the following the notation Bi means £ I^t|fifi, where B0ji = £ ^ifff/ is the 
i= l i= l 

spectral decomposition of the matrix B0)i. 
The bias of the simple quadratic estimator is 

bh0) = E(3[h0 + h'Sfi - SPAhSp + TrCC"1 Ah)) 

-ho-h'Sp-UpHrfP 

= ho + h'Sp + 6p'B0,h6P 

- (S&AhSP + 2b'(p)Ah6P + b'(/3)Ahb(/3)) 

-ho- h'Sp - hp'Hrfp 

where 

= - 2Ъ'($)AҺSP - Ъ'(P)AhЪ(p), 

u(/3) = (ôp'B0,iбp,.. .,6p'Bo,kбP)'. 

Its variance is 

(3) var(/.(/3)) = h ' C " ^ + 2Tr(A / lC- 1A / VC- 1) 

+ 4E(Sp)'AhC-1AhE(5p) - ih'C^A^Sp) 

(cf. Lemma 2.1). 

The MSE of the linear estimator is 

(4) MSE(h'/3) = vai(h'Sp) + b\(p) = h ' C " ^ + (5p'Ah5p)2. 

The MSE of the quadratic estimator is 

(5) MSE(h'/§) = var(/.(/3)) + b\0) 

= h'C- x h + 2 ̂ ( A h C - 1 AhC-1) 

+ 4E(6p)'AhC-1AhE(6p) - 4h'C-1AhE(6p) 

+ (2b'Ah6p + b'Ahb)2. 

To find a region of shifts 5P where (5) ^ (4) is tedious for a large k (dimension 

of P). A rule for the first orientation is given in (6). 
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3. MAIN RESULTS 

If the dimension k of the parameter /3 is large, then the investigation of the quan­
tities b(/3), b(/3), MSE(4»), i = 1,.. ., *, and MSE(/5f), i = 1, . . . , jfe, in this way is 
tedious, since the number of different directions of S/3 necessary for an investigation 
may be huge. Thus it seems that the following theorem can be useful in practice. 

T h e o r e m 3.1. The following inequalities are valid: 

|-4e^C-1B0,i<5/9| 

|-4e^C-1B0,iá/í3 

|<5/3'B0,i<5/9! 

|í/9'B0,ií/9 

|4í/9'Bo, iC-1Bo, ií/9| 

|4tc/9'Bo,iC-1Bo,ií/9| 

| -4e^C- 1 B 0 , i b | 

| -4e ' i C- 1 B 0 , ib 

|-2b'B 0 l i í/9 

|-2b'B0,i<5/9 

ISVBOJC-ÍBOJSP 

|8b 'B 0 , i C- 1 B 0 , i í j9 

|b 'Bo f ib 

|b'Bo, ťb 

^ ^ B o . í C - ^ o . i b 

| 4 b ' B 0 , i C - 1 B 0 , i b 

£ 4v lTr[(B0 , iC-1)-]v /{C-1}i, i^/9 'C (5/9, 

^ 4Tr(BiC-1)vl{C-1}i,fV/<5/9'C(5/9, 

^ vlTx[(Bo, iC--)-]í/9'CÍ/9> 

^ TrfPiC-^SpCSP, 

< 4vlTr[(B0,iC-1)4](5/9'C<r/3, 

^4Tr[(B iC-1)2] í5/9'CÍ/3, 

< 2vlTr[(B0>iC-1)2]vl{C-1}i(iK(Par)(/90)f5/9'C<5/9, 

< 2Tr(BiC-1)vl{C-1}i,iiY(Par)(/30)«5/9'C<5/3, 

< ^Tr[(B0,iC-i)2}K^(p0)(6f3'C6f3)W2\ 

< Tr(BiC-1)K(r*I\p0)(6f3'C6p)W2\ 

< 4vlTr[(B0,iC-1)4]iY(Par)(/90)((5/3'C(5/í3)(3l2), 

<4Tr[(B0,iC-l)2]K(par)(/9o)(<J/9'C(5/í3)(3/2), 

^ ivlTr[(Bo,iC-1)2][K(Par)(/30)]2(<5/9'C<5/9)2, 

< i T r í B i C - 1 ) ^ ^ " ) ^ ) ] 2 ^ ^ ^ ) 2 , 

< vlTr[(Bo, iC-1)«][A'(Par)(j9o)]2(íi9'C^)2, 

< T r ^ B i C - 1 ) 2 ] ^ ^ " ) ^ ) ] 2 ^ ^ ^ ) 2 . 

Obviously the right-hand sides depend on the quantity independent of the direction 
of the shift S/3. They depend on the Mahalanobis distance y/Sf3'CS(3 only. 

P r o o f . The Schwarz inequality and the relation implied by the definition of 

the quantity If(par)(/3o), i.e. 

b'Cb ^^[K^r\(30)}
2Sf3'CSf3, 
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will be used. We have 

|<5/3'B0,.<5/3| = |^ 'C 1 / 2 C- 1 / 2 B 0 , iC - 1 / 2 C 1 / 2 J/3 | 
k k 

< 6(3'C1'2 £ lAilfif/C1/2^ = £ lAiKf'C1/2^)2 

i=l i-1 
k 

i = i 

k 
where C - 1 / 2 Bo, ;C - 1 / 2 = Yl ^A^i ls t n e spectral decomposition of the matrix 

C - ^ B o . i C - 1 / 2 . 

Another procedure is 

\6p'B0,i6p\ = \SpC1/2C-^2B0jiC-1/2C^2Sp\ 

= | Tr(C-1 /2B0 , fC-1 /2C1 /2(5/3^ ,C1 /2) | 

= ,/Tr[(Bo,iC-1)2]<5/3'C<5/?, 

k k 

|-2b'B0 ,ií/3| = 2|b'C1/2 Y, AififíC1 /2^! < 2 £ |A.| ^ ' C 1 / 2 ^ ftC1/2^! 
i = l ѓ = l 

< 2 ^ lAilVbTČbV^CÍ/g = 2Tr(BiC-1)v/b7Čbv/í/3'Cá/8 
ѓ = l 

^ Tr(BiC-1)i^p">(A))(<5/3'C<S/3)3/2. 

Another procedure is 

|-2b'B0,i<5/3| = 2|b'C 1/ 2C - 1/ 2Bo,iC - 1/ 2C 1/ 2J )9| 

= 2| Tr(C - 1/2B0,iC - 1/2C1/2b' (J/3C1/2)| 

<2Y/Tr[(B0,iC-1)2]^/Tr(C1/25/3b'C1/2C1/2b'<J/9C1/2) 

= 2ylTr[(B0,iC
-1)2]V'b'CM/3'C<5/3 

^ 2.yTr[(B0,iC-1)2]iir(Par>(/9o)(<5/3'C^)3/2. 

The other inequalities can be proved analogously. • 
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The term -4eJC 1B0,i<"/3 is dominant when MSE(/?i) and MSE(/3i) is compared 

in the small neighbourhood of the point (3o-

L e m m a 3.1. 

(i) 

max{ |-4eJC - 1 Bo,.a i 3| : Sp'CSp = c2} = 

(ii) The equality 

4 c { C - 1 B 0 , І B Q , І C - 1 } І , І 

V{C- 1 Bo,iCB i , iC- 1 } i , i 

|-4e' iC-1B0, i<5/9| = (<5/3'B0)i<5/3)2 

in the direction of the vector {Bo.iC - 1}.^ is attained for 

6P = ° {Bo i C - 1 } . u 

^{C-iBo.iCBo.iC- 1},-,, 1 °'1 '•" 

where 

C3 = ^ { C-iBgV4^W [ { C " 1 B °- < C B °- < C " 1 } d '-

P r o o f . The gradient of the function 

f(6p) = -4eJC-1B0,i("/3, 6(3 e Rk, 

is —4B 0,iC _ 1ei at the point /3 = /30. If the vector 6(3, satisfying the equality 

c2 = 6(3'C6(3, is directed as the gradient, then obviously the function /(•) attains its 

maximum. Further procedure is evident. • 

The distance c from the last lemma can be compared with the value 

v^a-a) 

(the boundary of the confidence ellipsoid). The shift 5/3 in the direction of the 

gradient which attains the boundary of the confidence ellipsoid is 

6/3 = V { C ^ B ^ B ^ ^ { B o ' i C " 1 } -

R e m a r k 3.1. If the bias of the linear estimator brought to the square is smaller 

than the term |— 4e^C_1Bo,i<"/3| for the above mentioned 6(3, then the quadratic 

correction is of no use. Thus the following rule for the first orientation can be used. 
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If 

< 4 { C - 1 B ^ C - ^ , ^ { c . l B ^ c _ 1 } i / 

the linear estimator is to be preferred. If the opposite inequality occurs, then some 
more detailed investigation should be performed. 

R e m a r k 3.2. If C _ 1 = <T2CQX, then the last inequality can be written in the 
form 

(7) " 4 ( i c - ^ c 1
 B

a)c-n TttCo-XiC,-1}!,*)8 

Vl^O -^0,i^O-->0,i^O J*,*/ 

< 4{Co"lB0,iCo"1}MA/ / r - l n k
n jy n-lx ' 

V 1^0 J-,0,il^O-->0,i^o /-,-

The role played by the parameter a is now quite obvious. 

R e m a r k 3.3. The correction term in the case h(P) = fa is 

T0,i = -6p'B0ii6p + TrtBo.iC"1). 

If B0,i = Bi, then according to [10], [13], [15] it can be approximed by the random 
variable 

7b , .«-c?X/ , (0 )+ , &(B.C- 1 ) , 

where 

c\ = VilEi, ji = EtlVi, 

Ei = Sp'BiSp + 2b'BiSp + b'Bib, 

Vi = 2Tr (B i C- 1 B i C- 1 ) + 4(5/3 + bYBiC^B^SP + b). 

If Bo,i is not positive semidefinite, then the distribution function of To,* cannot be 
obtained so simply (cf. [2]). 

R e m a r k 3.4. If a function h(P) = h'/3, p G Kfc, is under consideration, then 
the matrix Bo,/! is used instead of Bo,*. In the case of a function 

h(P) = h0 + tiSp+±Sp'H16p, 

the matrix A^ must be used. 
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4 . EXAMPLE 

In the first step let us investigate the bias and the MSE of the linear and of the 

quadratic estimator, respectively. 

The Michaelis-Menten model is under consideration; i.e. 

f(x;ß!,ß2) = ßix 
ß2+x' 

Let(/Зi,o,/?2,o)' = (5, l ) ' and 

X 1 2 3 4 5 6 

f(x;ßгtoЉto) 2.5 3.33 3.75 4 4.17 4.29 

If the observation vector is Y ~ N6(f(',p),a2T) and a = 0.1, then 

K ( i n t ) (flo) = 0.025443, if ( p a r ) (f30) = 0.090940. 

Thus the intrinsic nonlinearity can be neglected (in detail cf. [14]) and the lineariza­

tion regions with respect to the bias of the whole vector /3 and the single parameters 

Pi and /32 are given in Figs. 4.1-4.3, respectively. 

In the figures seven numbers are given; five white numbers are connected with the 

white ellipse (linearization region). They give the maximum coordinates of the ellipse 

points, a size of the raster rectangulars and the step in the first coordinate used for 

the construction of the ellipse. Two dark numbers have the analogous meaning for 

the dark ellipse (0.95-confidence ellipse). 

In this situation the linearization for the functions hi((3) = /3i or h2((3) = /32, 

respectively, is possible, even if the confidence ellipse for the vector parameter is not 

essentially smaller than the linearization region (cf. Fig. 4.1). Thus it is interesting 

whether the quadratic estimator is not better. 

As far as the parameter /?i is concerned the shift 6(3 = (0,6(32)
f is dangerous 

(cf. Fig. 4.2). Let 6(3 be chosen on the boundary of the 0.95-confidence ellipse, 

i.e. 6/32 = 0.1076. Thus we obtain 

b(/3i) = -0.004469 and b((32) = -0.007042, 

i.e. b = (-0.004469, -0.007042)'. The bias b(/3t) is 

b(0i) = -2b 'B 0 , i<^ + b 'B 0 , ib = -0.000604, 
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Figure 4.1 Linearization region for the whole vector ß 

Figure 4.2. Linearization region for ß\. 

Figure 4.3. Linearization region for ßi. 

91 



which is significantly smaller (in the absolute value) than &(/?i) = —0.004469. Even 

for S(3 = 3 x (0,0.1076)' the situation is analogous: 

b(/3) = (-0,040224, -0.063374)', b0x) = -0.017342. 

(The values y var(/?i) and yvar(/32) are 0.139 and 0.125, respectively.) 

The bias b(f32) due to the shift 6(3 = (0,0.1076)' and S(3 = 3 x (0,0.1076)' is 

-0.000849 and -0.24219, respectively. 

Further we have (60 = (0,0.1076)') 

vax(/3i) = 0.01936, var(/Ji) = 0.02170, 

vax(/32) = 0.01245, var( |2) = 0.01511, 

and 

MSE(/3i) = 0.01938, MSE(/5i) = 0.02170, 

MSE(/32) = 0.01250, MSE(/I2) = 0.01511. 

If 6/3 = 3 x (0, 0.1076)', then 

MSE(/?i) = 0.02098, MSE(/Ji) = 0.02622, 

MSE(/?2) = 0.01646, MSE(/j2) = 0.02005. 

If we denote S(3 = ( ), we obtain 
< ) • 

MSE(/3i) = 0.01936 + 0.148981x4, 

MSE(/3!) = 0.019406 + 0.022028x - 0.005977x2 - 0.009023x3 

+ 0.002744x4 + (0.469452x3 + 0.142744x4)2, 

MSE(/32) = 0.012448 + 0.369822x
4, 

MSE(^ 2) = 0.012493 + 0.024572x - 0.000777x
2 - 0.012996x3 

+ 0.003449x4 + (0.662448x3 + 0.177955x4)2, 

cf. Table 1. 
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X MSE(ft) MSE(|i) MSE(/3
2
) MSE(/J

2
) 

0.03 0.01936 0.02006 0.01245 0.01323 

0.1 0.01938 0.02154 0.01249 0.01493 

0.2 0.01960 0.02352 0.01304 0.01727 

0.3 0.02057 0.02545 0.01544 0.01984 

0.4 0.02317 0.02789 0.02192 0.02366 

0.5 0.02867 0.03254 0.03556 0.03200 

0.6 0.03867 0.04325 0.06038 0.05220 

0.7 0.05513 0.06760 0.10124 0.09855 

ТаЫе 1. 

It is obvious that the quadratic corrections in this case have no sense. 

The inequalities from Theorem 3.1 for the parameter /?i (/32) are 

-4e ,

1C-1B0,z*/3 = 0.00237 (0.00264), 

4^TrKBo.iC-1 ) 2 ] ^ { C - 1 }itijSp'CSp = 0.00654 (0.00524), 

4 T T ( B Í C - 1 ) Y / { C - 1 } M V / Í Í 9 ' C Í / 9 = 0.00654 (0.00598), 

SP'Bo,iS/3 = - 0.00447 (-0.00704), 

.yTr[(B0,.C-1)a]íj9'Cíl9 = 0.02878 (0.02872), 

TriBiC-^SpCSp = 0.02878 (0.03279), 

4<r/3'B0,iC-1B0,iá/9 = 0.00009 (0.00014), 

4y/rrr[(Bo,iC-1)4]č/3'C.5,9 = 0.00055 (0.00055), 

4Tr[BiC-1)2].5/3'Cá/3 = 0.00055 (0.00072), 

-4e' 1 C- 1 B 0 , ib = - 0.00015 (-0.00015), 

2y/TV[(Bo,iC-1)2]v
/{C-1}i,iA:(par)( f9o)á/3'Cí f9 = 0.00073 (0.00058), 

2Tr(BiC-1)Y/{C-1}i,iA:(par>(f9o)í/3'C($/9 = 0.00073 (0.00067), 

-2b'B0tiSP = - 0.00058 (-0.00082), 

4J'ft[(Bo,iC-1)a].ff(p-T)09o)(í/9'CÍ/9)8/a = 0.00641 (0.00639), 

Tr(5 iC-1).K'(p">(í/9'CÍ/3)3/a = 0.00641 (0.00730), 
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8b'B0,iC~-lBojS/3 - -0 .00001 (-0.00002), 

4^Tr[(B0,iC-
1)4],ft:par)(yr3o)(^

,C^)3/2 = 0 .00012 (0 .00012) , 

4Tr[(B0, iC-1)2]K(par)(/3o)(*/3 ,CJ/3)3/2 = 0.00012 (0.00016), 

b'B0,2b = - 0.00002 (-0.00002), 

^yjTr[(Bo^iC-1)2][K^ar)(f3o)]2(S/3,CSP)2 = 0.00036 (0.00036), 

i Tr(BiC-l)[K^(Po)]2(SP'CSP)2 = 0.00036 (0.00041), 

4b /Bo,;Cr1Bo,ib = 0.00000 (0.00000), 

yjTr[(BoiiC-1)4][K^r\(3o)]2(S(3,CSP)2 = 0.00001 (0.00001), 

Tr[(BiC-1)2][K(parH/30)]2(*/3,C(5/3)2 = 0.00001 (0.00001). 

Here the index i on the left-hand side means 1 for the first number on the right-hand 
side and 2 for the second (in the bracket). 

In many cases the upper bound is significantly larger than the actual value (by 
virtue of the Schwarz inequality). Nevertheless, some information on the individual 
terms can be obtained in this way: 

_ / 3.3261, -3.812 4N 

0 ~ V-3.8124, 5.1731 

! _ /1.936, 1.427 
-'o 1.427, 1.246 

_ / 0, 0.100 00 \ 
0,2 ~ V 0.100 00, -0.60813 y ' 

( ( r - ' B ^CB 5 ) C-n y W ^ C o 1 } ^ ) 2 =0-3214, 
V l M ) -->0,2M)---*0,2M) J M / 

M q % q ' } , i ^ ° B
M ) - = 2.3918. 

V 1^0 -3o,2i^O-£>0,2^o J2,2 

The left-hand side of (7) is smaller than the right-hand side of (7) even for a — 1.65. 
In this case 

If(int)(/30) - 0.4198, K(par>(A)) = 1.5005. 

An experiment characterized by these values would be extremely badly planned. 
Thus the Michaelis-Menten model can be linearized at the considered point /3o — 

(5,1)' under a sufficiently small value of a only. The quadratic corrections are of no 
use (cf. also Tab. 1). If a sufficiently small a cannot be attained, then the methods 
given in [11], [12] must be used. 

94 



References 

[1] D. M. Bates, D. G. Watts: Relative curvature measures of nonlinearity. J. Roy. Statist. 
Soc. Ser. B 42 (1980), 1-25. 

[2] J. P. Imhof. Computing the distribution of quadratic forms in normal variables. 
Biometrika 48 (1961), 419-426. 

[3] A. Jencovd: A comparison of linearization and quadratization domains. Appl. Math. 4% 
(1997), 279-291. 

[4] L. Kubdcek On a linearization of regression models. Appl. Math. 40 (1995), 61-78, 
[5] L. Kubdcek, L. Kubdckovd, J. Volaufovd: Statistical Models with Linear Structures. 

Veda, Bratislava, 1995. 
[6] L. Kubdcek Models with a low nonlinearity. Tatra Mt. Math. Publ. 7 (1996), 149-155. 
[7] L. Kubdcek Quadratic regression models. Math. Slovaca ^6 (1996), 111-126. 
[8] L. Kubdcek. Corrections of estimators in linearized models. Acta Univ. Palack. Olomuc, 

Fac. Rerum Math. 37(1998), 69-80. 
[9] L. Kubdcek, L. Kubdckovd: Regression models with a weak nonlinearity. Technical Re­

ports. University of Stuttgart. 
[10] P. B. Patnaik The non-central x ar-d F-distributions and their applications. Bio­

metrika 36 (1949), 202-232. 
[11] A. Pdzman: Nonlinear Statistical Models. Kluwer Academic Publishers, Dordrecht-

Boston-London and Ister Science Press, Bratislava, 1993. 
[12] R. Potocky, To Van Ban: Confidence regions in nonlinear regression models. Appl. 

Math. 37(1992), 29-39. 
[13] F. E. Satterthwaite: An approximate distribution of estimates of variance components. 

Biometrics Bulletin 2 (1946), 110-114. 
[14] E. Tesafikovd, L. Kubdcek How to deal with regression models with a weak nonlinearity. 

Discuss. Math. Probab. Stat. 21 (2001), 21-48. 
[15] B. L. Welch: The generalization of Student's problem when several different population 

variances are involved. Biometrika 34 (1947), 28-35. 

Author's address: L. Kubdcek, Department of Mathematical Analysis and Applications 
of Mathematics, Faculty of Science, Palacky University, Tomkova 40, 779 00 Olomouc, Czech 
Republic, e-mail: kubaceklQrisc.upol.cz. 

95 



49 (2004) APPLICATIONS OF MATHEMATICS No. 2, 81–95

LINEAR VERSUS QUADRATIC ESTIMATORS

IN LINEARIZED MODELS*

� � � � � ��� � � � 	�
 ��

, Olomouc

(Received January 30, 2001)

Abstract. In nonlinear regression models an approximate value of an unknown parameter
is frequently at our disposal. Then the linearization of the model is used and a linear
estimate of the parameter can be calculated. Some criteria how to recognize whether a
linearization is possible are developed. In the case that they are not satisfied, it is necessary
to take into account either some quadratic corrections or to use the nonlinear least squares
method. The aim of the paper is to find some criteria for an ordering linear and quadratic
estimators.

Keywords: nonlinear regression model, linearization, quadratization

MSC 2000 : 62J05, 62F10

1. Introduction and notation

How to proceed in estimation of parameters in nonlinear models is a frequently
occurring problem. There are several possibilities; to linearize the model, to use

the nonlinear least squares method, the maximum likelihood principle, a polynomial
estimator, etc.

The aim of the paper is to find out some simple rules how to recognize whether the
linearization is sufficient for the solution of the problem or whether it is necessary

to use some quadratic corrections in order to obtain an estimator with smaller MSE
(mean square error) than MSE of the linear estimator. Since criteria for recognizing

the possibility of linearizing the model have been already developed (cf. [4], [6], [9]),
the problem is what to do when such a criterion is not satisfied.

*This work was supported by Grant No. 201/99/0327 of the Grant Agency of the Czech
Republic and by Council of the Czech Government J 14/98: 153 100011.
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The notation Y ∼ Nn(f(β),Σ), β ∈ � k , means the following. The n-dimensional

vector Y (observation vector) is random with normal distribution, its mean value
E(Y) is f(β) where f(·) is an n-dimensional vector function of the known analytical
form with continuous second derivatives, the k-dimensional parameter β is unknown

and can be any element of the k-dimensional Euclidean space � k . The covariance
matrix var(Y) of the vector Y is given and is denoted by Σ.
The linearized and quadratized approximations of this model, i.e.

Y = f0 + Fδβ + ε(1)

and

Y = f0 + Fδβ +
1
2
κf (δβ) + ε,(2)

respectively, will be under consideration. Here ε is an error vector, β0 is an approx-

imate value of the actual value β∗ of the vector β and

f0 = f(β0),

F = ∂f(u)/∂u′|u=β0 ,

κf (δβ) = (κ1(δβ), . . . , κn(δβ))′,

κi(δβ) = δβ′Fiδβ, i = 1, . . . , n,

Fi = ∂2fi(u)/∂u∂u′|u=β0 , i = 1, . . . , n.

�����������
1.1. The vector β0 should be chosen in such a way that the inequality

v′
0Σ

−1v0 6 χ2
k(1− α),

be satisfied for a sufficiently small α. Here

v0 = F(F′Σ−1F)−1F′Σ−1[y − f(β0)]

(y is a realization of Y), χ2
k(1− α) is the (1− α) quantile of the central chi-square

distribution with k degrees of freedom. By virtue of Proposition 2.6.1 in [11] this

ensures that β0 is an element of the confidence region for the parameter β with
probability 1− α.

The task is to estimate a function h(·) of the form

h(β) = h0 + h′δβ +
1
2
δβ′H1δβ,

where h0 is a known number, h is a known k-dimensional vector and H1 is a known
k × k symmetric matrix.
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2. Preliminaries

In what follows the following well known statement will be useful.

Lemma 2.1. Let η ∼ Nk(µ,V), h ∈ � k and let A be an k × k symmetric

matrix. Then

var(h′η) = h′Vh,

cov(h′η, η′Aη) = 2h′VAµ,

E(η′Aη) = µ′Aµ + Tr(AV),

var(η′Aη) = 2 Tr(AVAV) + 4µ′AVAµ.

������� �
cf., e.g., in [5]. �

In [7] a simple quadratic estimator in the model (2) is given in the form

˜̃
β = β̂ −C−1F′Σ−1 1

2
κf (δβ̂) +

1
2
C−1F′Σ−1(Tr(C−1F1), . . . , Tr(C−1Fn))′,

where

˜̃β = β0 + δ ˜̃β,

δβ̂ = C−1F′Σ−1(Y − f0),

β̂ = β0 + δβ̂,

C = F′Σ−1F.

We suppose that the rank of the matrix F is r(F) = k < n and the matrix Σ is
positive definite.
Let

b(β̂) = E(β̂)− β, PΣ−1

F = FC−1F′Σ−1, MΣ−1

F = I−PΣ−1

F

and

K(int)(β0) = sup





√
κ′

f (u)Σ−1MΣ−1

F κf (u)

u′Cu
: u ∈ � k



 ,

K(par)(β0) = sup





√
κ′

f (u)Σ−1PΣ−1

F κf (u)

u′Cu
: u ∈ � k




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(cf. [1]) and let χ2
k(1−α) be the (1−α)-quantile of the chi-square central distribution

with k degrees of freedom.
If the linearization region (with respect to bias) (cf. e.g. [4]) for the estimator β̂,

i.e.
{
β0 + δβ : δβ′Cδβ 6 cb

√
χ2

k(1− α)/K(par)(β0)
}

(
⇒ ∀{h′ ∈ � k}|h′u(β)| 6 cb

√
χ2

k(1− α)
√

h′C−1h
)
,

covers the actual value β∗ of the parameter β with sufficiently high probability,
there is no use to correct the linear estimator β̂ = β0 + δβ̂. If this situation does

not occur, then it may be useful to use a correction of the linear estimator. The
decision whether to realize this correction or not depends, e.g., on the mean square

error (MSE) of the linear estimator and on the MSE of the quadratic estimator.
In the following the aim is to find a simple rule for the above mentioned decision

(another investigation of this situation is given in [3]).
In order to be a little more general, the problem is formulated as follows.
Let (2) be under consideration. The function

h(β) = h0 + h′δβ +
1
2
δβ′H1δβ

is to be estimated.

In the linearized situation, i.e. (1) and h(β) = h0 + h′δβ, the estimator is

h(β̂) = h0 + h′δβ̂.

Its bias is

bh(β̂) = h0 + h′E(δβ̂)− h(β) =
1
2
L′

hκf (δβ)− 1
2
δβ′H1δβ = δβ′Ahδβ,

where

L′
h = h′C−1F′Σ−1,

Bh =
n∑

i=1

1
2
{L′

h}iFi,

Ah = Bh −
1
2
H1.

Thus the simplest quadratic unbiased (as far as the second order terms of δβ are
concerned) estimator of the function h(·) is

h
˜̃(β) = h0 + h′δβ̂ − δβ̂′Ahδβ̂ + Tr(C−1Ah).
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�����������
2.1. IfH1 =

n∑
i=1

{L′
h}iFi, then it is sufficient to use the linear estimator

h( ˜̃
β) = h(β0) + h′δβ̂.

Let B0,i =
n∑

j=1

{e′iC−1F′Σ−1}j
1
2Fj and B0,h =

k∑
i=1

hiB0,i, where ei ∈ � k , {ei}j =

δi,j (Kronecker delta).

In the following the notation Bi means
k∑

i=1

|λi|fif ′i , where B0,i =
k∑

i=1

λifif ′i is the

spectral decomposition of the matrix B0,i.
The bias of the simple quadratic estimator is

bh( ˜̃β) = Eβ [h0 + h′δ̂β − δ̂βAhδ̂β + Tr(C−1Ah)]

− h0 − h′δβ − 1
2
δβ′H1δβ

= h0 + h′δβ + δβ′B0,hδβ

− (δβ′Ahδβ + 2b′(β̂)Ahδβ + b′(β̂)Ahb(β̂))

− h0 − h′δβ − 1
2
δβ′H1δβ

= − 2b′(β̂)Ahδβ − b′(β̂)Ahb(β̂),

where
u(β̂) = (δβ′B0,1δβ, . . . , δβ′B0,kδβ)′.

Its variance is

var(h( ˜̃
β)) = h′C−1h + 2 Tr(AhC−1AhC−1)(3)

+ 4E(δβ̂)′AhC−1AhE(δβ̂)− 4h′C−1AhE(δβ̂)

(cf. Lemma 2.1).
The MSE of the linear estimator is

(4) MSE(h′β̂) = var(h′δβ̂) + b2
h(β̂) = h′C−1h + (δβ′Ahδβ)2.

The MSE of the quadratic estimator is

MSE(h′ ˜̃β) = var(h ˜̃(β)) + b2
h( ˜̃

β)(5)

= h′C−1h + 2 Tr(AhC−1AhC−1)

+ 4E(δβ̂)′AhC−1AhE(δβ̂)− 4h′C−1AhE(δβ̂)

+ (2b′Ahδβ + b′Ahb)2.

To find a region of shifts δβ where (5) 6 (4) is tedious for a large k (dimension

of β). A rule for the first orientation is given in (6).
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3. Main results

If the dimension k of the parameter β is large, then the investigation of the quan-
tities b(β̂), b( ˜̃

β), MSE(β̂i), i = 1, . . . , k, and MSE( ˜̃
βi), i = 1, . . . , k, in this way is

tedious, since the number of different directions of δβ necessary for an investigation
may be huge. Thus it seems that the following theorem can be useful in practice.

Theorem 3.1. The following inequalities are valid:

|−4e′iC
−1B0,iδβ| 6 4

√
Tr[(B0,iC−1)2]

√
{C−1}i,i

√
δβ′Cδβ,

|−4e′iC
−1B0,iδβ| 6 4 Tr(BiC−1)

√
{C−1}i,i

√
δβ′Cδβ,

|δβ′B0,iδβ| 6
√

Tr[(B0,iC−1)2]δβ′Cδβ,

|δβ′B0,iδβ| 6 Tr(BiC−1)δβ′Cδβ,

|4δβ′B0,iC−1B0,iδβ| 6 4
√

Tr[(B0,iC−1)4]δβ′Cδβ,

|4δβ′B0,iC−1B0,iδβ| 6 4 Tr[(BiC−1)2]δβ′Cδβ,

|−4e′iC
−1B0,ib| 6 2

√
Tr[(B0,iC−1)2]

√
{C−1}i,iK

(par)(β0)δβ′Cδβ,

|−4e′iC
−1B0,ib| 6 2 Tr(BiC−1)

√
{C−1}i,iK

(par)(β0)δβ′Cδβ,

|−2b′B0,iδβ| 6
√

Tr[(B0,iC−1)2]K(par)(β0)(δβ′Cδβ)(3/2),

|−2b′B0,iδβ| 6 Tr(BiC−1)K(par)(β0)(δβ′Cδβ)(3/2),

|8b′B0,iC−1B0,iδβ| 6 4
√

Tr[(B0,iC−1)4]K(par)(β0)(δβ′Cδβ)(3/2),

|8b′B0,iC−1B0,iδβ| 6 4 Tr[(B0,iC−1)2]K(par)(β0)(δβ′Cδβ)(3/2),

|b′B0,ib| 6
1
4

√
Tr[(B0,iC−1)2][K(par)(β0)]2(δβ′Cδβ)2,

|b′B0,ib| 6
1
4

Tr(BiC−1)[K(par)(β0)]2(δβ′Cδβ)2,

|4b′B0,iC−1B0,ib| 6
√

Tr[(B0,iC−1)4][K(par)(β0)]2(δβ′Cδβ)2,

|4b′B0,iC−1B0,ib| 6 Tr[(BiC−1)2][K(par)(β0)]2(δβ′Cδβ)2.

Obviously the right-hand sides depend on the quantity independent of the direction
of the shift δβ. They depend on the Mahalanobis distance

√
δβ′Cδβ only.

������� �
. The Schwarz inequality and the relation implied by the definition of

the quantity K(par)(β0), i.e.

b′Cb 6 1
4
[K(par)(β0)]2δβ′Cδβ,
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will be used. We have

|δβ′B0,iδβ| = |δβ′C1/2C−1/2B0,iC−1/2C1/2δβ|

6 δβ′C1/2
k∑

i=1

|λi|fif ′iC1/2δβ =
k∑

i=1

|λi|(f ′C1/2δβ)2

6
k∑

i=1

|λi|δβ′Cδβ = Tr(BiC−1)δβ′Cδβ,

where C−1/2B0,iC−1/2 =
k∑

i=1

λifif ′i is the spectral decomposition of the matrix

C−1/2B0,iC−1/2.

Another procedure is

|δβ′B0,iδβ| = |δβC1/2C−1/2B0,iC−1/2C1/2δβ|
= |Tr(C−1/2B0,iC−1/2C1/2δβδβ′C1/2)|

6
√

Tr(C−1/2B0,iC−1/2C−1/2B0,iC−1/2)
√

Tr[(C1/2δβδβ′C1/2)2]

=
√

Tr[(B0,iC−1)2]δβ′Cδβ,

|−2b′B0,iδβ| = 2|b′C1/2
k∑

i=1

λifif ′iC
1/2δβ| 6 2

k∑

i=1

|λi| |b′C1/2fi| |f ′iC1/2δβ|

6 2
k∑

i=1

|λi|
√

b′Cb
√

δβ′Cδβ = 2 Tr(BiC−1)
√

b′Cb
√

δβ′Cδβ

6 Tr(BiC−1)K(par)(β0)(δβ′Cδβ)3/2.

Another procedure is

|−2b′B0,iδβ| = 2|b′C1/2C−1/2B0,iC−1/2C1/2δβ|
= 2|Tr(C−1/2B0,iC−1/2C1/2b′δβC1/2)|

6 2
√

Tr[(B0,iC−1)2]
√

Tr(C1/2δβb′C1/2C1/2b′δβC1/2)

= 2
√

Tr[(B0,iC−1)2]
√

b′Cbδβ′Cδβ

6 2
√

Tr[(B0,iC−1)2]
1
2
K(par)(β0)(δβ′Cδβ)3/2.

The other inequalities can be proved analogously. �
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The term −4e′iC
−1B0,iδβ is dominant when MSE(β̂i) and MSE( ˜̃

βi) is compared
in the small neighbourhood of the point β0.

Lemma 3.1.
(i)

max{|−4e′iC
−1B0,iδβ| : δβ′Cδβ = c2} =

∣∣∣∣−4c
{C−1B0,iB0,iC−1}i,i√
{C−1B0,iCBi,iC−1}i,i

∣∣∣∣.

(ii) The equality

|−4e′iC
−1B0,iδβ| = (δβ′B0,iδβ)2

in the direction of the vector {B0,iC−1}·,i is attained for

δβ =
c√

{C−1B0,iCB0,iC−1}i,i

{B0,iC−1}·,i,

where

c3 = 4
{C−1B2

0,iC
−1}i,i

[{C−1B3
0,iC−1}i,i]2

√
[{C−1B0,iCB0,iC−1}i,i]3.

������� �
. The gradient of the function

f(δβ) = −4e′iC
−1B0,iδβ, δβ ∈ � k ,

is −4B0,iC−1ei at the point β = β0. If the vector δβ, satisfying the equality

c2 = δβ′Cδβ, is directed as the gradient, then obviously the function f(·) attains its
maximum. Further procedure is evident. �

The distance c from the last lemma can be compared with the value

√
χ2

k(1− α)

(the boundary of the confidence ellipsoid). The shift δβ in the direction of the
gradient which attains the boundary of the confidence ellipsoid is

δβ =

√
χ2

k(1− α)
{C−1B0,iCB0,iC−1}i,i

{B0,iC−1}·,i.

�����������
3.1. If the bias of the linear estimator brought to the square is smaller

than the term |−4e′iC
−1B0,iδβ| for the above mentioned δβ, then the quadratic

correction is of no use. Thus the following rule for the first orientation can be used.
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If
(

χ2
k(1− α)

{C−1B0,iCB0,iC−1}i,i

)2

({C−1B3
0,iC

−1}i,i)2(6)

6 4{C−1B2
0,iC

−1}i,i

√
χ2

k(1− α)
{C−1B0,iCB0,iC−1}i,i

,

the linear estimator is to be preferred. If the opposite inequality occurs, then some
more detailed investigation should be performed.
�����������

3.2. If C−1 = σ2C−1
0 , then the last inequality can be written in the

form

σ4

(
χ2

k(1− α)
{C−1

0 B0,iC0B0,iC−1
0 }i,i

)2

({C−1
0 B3

0,iC
−1
0 }i,i)2(7)

6 4{C−1
0 B2

0,iC
−1
0 }i,i

√
χ2

k(1− α)
{C−1

0 B0,iC0B0,iC−1
0 }i,i

.

The role played by the parameter σ is now quite obvious.
�����������

3.3. The correction term in the case h(β) = βi is

τ0,i = −δβ̂′B0,iδβ̂ + Tr(B0,iC−1).

If B0,i = Bi, then according to [10], [13], [15] it can be approximed by the random

variable
τ0,i ≈ −c2

i χ
2
fi

(0) + Tr(BiC−1),

where

c2
i = Vi/Ei, fi = E2

i /Vi,

Ei = δβ′Biδβ + 2b′Biδβ + b′Bib,

Vi = 2 Tr(BiC−1BiC−1) + 4(δβ + b)′BiC−1Bi(δβ + b).

If B0,i is not positive semidefinite, then the distribution function of τ0,i cannot be
obtained so simply (cf. [2]).
�����������

3.4. If a function h(β) = h′β, β ∈ � k , is under consideration, then

the matrix B0,h is used instead of B0,i. In the case of a function

h(β) = h0 + h′δβ +
1
2
δβ′H1δβ,

the matrix Ah must be used.
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4. Example

In the first step let us investigate the bias and the MSE of the linear and of the

quadratic estimator, respectively.

The Michaelis-Menten model is under consideration; i.e.

f(x; β1, β2) =
β1x

β2 + x
.

Let (β1,0, β2,0)′ = (5, 1)′ and

x 1 2 3 4 5 6

f(x; β1,0, β2,0) 2.5 3.33 3.75 4 4.17 4.29

If the observation vector is Y ∼ N6(f(·, β), σ2I) and σ = 0.1, then

K(int)(β0) = 0.025443, K(par)(β0) = 0.090940.

Thus the intrinsic nonlinearity can be neglected (in detail cf. [14]) and the lineariza-
tion regions with respect to the bias of the whole vector β and the single parameters

β1 and β2 are given in Figs. 4.1–4.3, respectively.

In the figures seven numbers are given; five white numbers are connected with the
white ellipse (linearization region). They give the maximum coordinates of the ellipse

points, a size of the raster rectangulars and the step in the first coordinate used for
the construction of the ellipse. Two dark numbers have the analogous meaning for

the dark ellipse (0.95-confidence ellipse).

In this situation the linearization for the functions h1(β) = β1 or h2(β) = β2,

respectively, is possible, even if the confidence ellipse for the vector parameter is not
essentially smaller than the linearization region (cf. Fig. 4.1). Thus it is interesting

whether the quadratic estimator is not better.

As far as the parameter β1 is concerned the shift δβ = (0, δβ2)′ is dangerous
(cf. Fig. 4.2). Let δβ be chosen on the boundary of the 0.95-confidence ellipse,
i.e. δβ2 = 0.1076. Thus we obtain

b(β̂1) = −0.004469 and b(β̂2) = −0.007042,

i.e. b = (−0.004469,−0.007042)′. The bias b( ˜̃β1) is

b( ˜̃β1) = −2b′B0,1δβ + b′B0,1b = −0.000604,
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Figure 4.1 Linearization region for the whole vector β.

Figure 4.2. Linearization region for β1.

Figure 4.3. Linearization region for β2.
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which is significantly smaller (in the absolute value) than b(β̂1) = −0.004469. Even
for δβ = 3× (0, 0.1076)′ the situation is analogous:

b(β̂) = (−0, 040224,−0.063374)′, b( ˜̃
β1) = −0.017342.

(The values
√

var(β̂1) and
√

var(β̂2) are 0.139 and 0.125, respectively.)

The bias b( ˜̃β2) due to the shift δβ = (0, 0.1076)′ and δβ = 3 × (0, 0.1076)′ is
−0.000849 and −0.24219, respectively.

Further we have (δβ = (0, 0.1076)′)

var(β̂1) = 0.01936, var( ˜̃
β1) = 0.02170,

var(β̂2) = 0.01245, var( ˜̃
β2) = 0.01511,

and

MSE(β̂1) = 0.01938, MSE( ˜̃
β1) = 0.02170,

MSE(β̂2) = 0.01250, MSE( ˜̃
β2) = 0.01511.

If δβ = 3× (0, 0.1076)′, then

MSE(β̂1) = 0.02098, MSE( ˜̃
β1) = 0.02622,

MSE(β̂2) = 0.01646, MSE( ˜̃
β2) = 0.02005.

If we denote δβ =
(

0
x

)
, we obtain

MSE(β̂1) = 0.01936 + 0.148981x4,

MSE( ˜̃β1) = 0.019406 + 0.022028x− 0.005977x2 − 0.009023x3

+ 0.002744x4 + (0.469452x3 + 0.142744x4)2,

MSE(β̂2) = 0.012448 + 0.369822x4,

MSE( ˜̃β2) = 0.012493 + 0.024572x− 0.000777x2 − 0.012996x3

+ 0.003449x4 + (0.662448x3 + 0.177955x4)2,

cf. Table 1.
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x MSE(β̂1) MSE( ˜̃β1) MSE(β̂2) MSE( ˜̃β2)

0.03 0.01936 0.02006 0.01245 0.01323

0.1 0.01938 0.02154 0.01249 0.01493

0.2 0.01960 0.02352 0.01304 0.01727

0.3 0.02057 0.02545 0.01544 0.01984

0.4 0.02317 0.02789 0.02192 0.02366

0.5 0.02867 0.03254 0.03556 0.03200

0.6 0.03867 0.04325 0.06038 0.05220

0.7 0.05513 0.06760 0.10124 0.09855

Table 1.

It is obvious that the quadratic corrections in this case have no sense.

The inequalities from Theorem 3.1 for the parameter β1 (β2) are

−4e′1C
−1B0,iδβ = 0.00237 (0.00264),

4
√

Tr[(B0,iC−1)2]
√
{C−1}i,i

√
δβ′Cδβ = 0.00654 (0.00524),

4 Tr(BiC−1)
√
{C−1}i,i

√
δβ′Cδβ = 0.00654 (0.00598),

δβ′B0,iδβ = − 0.00447 (−0.00704),√
Tr[(B0,iC−1)2]δβ′Cδβ = 0.02878 (0.02872),

Tr(BiC−1)δβ′Cδβ = 0.02878 (0.03279),

4δβ′B0,iC−1B0,1δβ = 0.00009 (0.00014),

4
√

Tr[(B0,iC−1)4]δβ′Cδβ = 0.00055 (0.00055),

4 Tr[BiC−1)2]δβ′Cδβ = 0.00055 (0.00072),

−4e′1C
−1B0,ib = − 0.00015 (−0.00015),

2
√

Tr[(B0,iC−1)2]
√
{C−1}i,iK

(par)(β0)δβ′Cδβ = 0.00073 (0.00058),

2 Tr(BiC−1)
√
{C−1}i,iK

(par)(β0)δβ′Cδβ = 0.00073 (0.00067),

−2b′B0,iδβ = − 0.00058 (−0.00082),√
Tr[(B0,iC−1)2]K(par)(β0)(δβ′Cδβ)3/2 = 0.00641 (0.00639),

Tr(BiC−1)K(par)(δβ′Cδβ)3/2 = 0.00641 (0.00730),
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8b′B0,iC−1B0,iδβ = − 0.00001 (−0.00002),

4
√

Tr[(B0,iC−1)4]Kpar)(β0)(δβ′Cδβ)3/2 = 0.00012 (0.00012),

4 Tr[(B0,iC−1)2]K(par)(β0)(δβ′Cδβ)3/2 = 0.00012 (0.00016),

b′B0,ib = − 0.00002 (−0.00002),
1
4

√
Tr[(B0,iC−1)2][K(par)(β0)]2(δβ′Cδβ)2 = 0.00036 (0.00036),

1
4

Tr(BiC−1)[K(par)(β0)]2(δβ′Cδβ)2 = 0.00036 (0.00041),

4b′B0,iC−1B0,ib = 0.00000 (0.00000),√
Tr[(B0,iC−1)4][K(par)(β0)]2(δβ′Cδβ)2 = 0.00001 (0.00001),

Tr[(BiC−1)2][K(par)(β0)]2(δβ′Cδβ)2 = 0.00001 (0.00001).

Here the index i on the left-hand side means 1 for the first number on the right-hand
side and 2 for the second (in the bracket).

In many cases the upper bound is significantly larger than the actual value (by
virtue of the Schwarz inequality). Nevertheless, some information on the individual

terms can be obtained in this way:

C0 =
(

3.326 1, −3.812 4
−3.812 4, 5.173 1

)
,

C−1
0 =

(
1.936, 1.427
1.427, 1.246

)
,

B0,2 =
(

0, 0.100 00
0.100 00, −0.608 13

)
,

(
χ2

2(0; 0.95)
{C−1

0 B0,2C0B0,2C−1
0 }i,i

)2

({C−1
0 B3

0,2C
−1
0 }2,2)2 = 0.3214,

4{C−1
0 B2

0,2C
−1
0 }2,2

√
χ2

2(0; 0.95)
{C−1

0 B0,2iC0B0,2C−1
0 }2,2

= 2.3918.

The left-hand side of (7) is smaller than the right-hand side of (7) even for σ = 1.65.
In this case

K(int)(β0) = 0.4198, K(par)(β0) = 1.5005.

An experiment characterized by these values would be extremely badly planned.
Thus the Michaelis-Menten model can be linearized at the considered point β0 =
(5, 1)′ under a sufficiently small value of σ only. The quadratic corrections are of no
use (cf. also Tab. 1). If a sufficiently small σ cannot be attained, then the methods
given in [11], [12] must be used.
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