Previous |  Up |  Next

Article

Keywords:
cable stayed bridges; existence; uniqueness; continuous dependence on data; homogenization of cable systems
Summary:
A model of a cable stayed bridge is proposed. This model describes the behaviour of the center span, the part between pylons, hung on one row of cable stays. The existence, the uniqueness of a solution of a time independent problem and the continuous dependence on data are proved. The existence and the uniqueness of a solution of a linearized dynamic problem are proved. A homogenizing procedure making it possible to replace cables by a continuous system is proposed. A nonlinear dynamic problem connected with the homogenizing procedure is proposed and the existence and uniqueness of a solution are proved.
References:
[1] N. U. Ahmed, H.  Harbi: Mathematical analysis of dynamic models of suspension bridges. SIAM J.  Appl. Math. 58 (1998), 853–874. DOI 10.1137/S0036139996308698 | MR 1616611
[2] J.  Berkovits, P.  Drábek, H.  Leinfelder, V.  Mustonen, and G.  Tajčová: Time-periodic oscillations in suspension bridges: existence of unique solution. Nonlinear Anal., Real World Appl. 1 (2000), 345–362. MR 1791531
[3] P.  Drábek, H.  Leinfelder, and G.  Tajčová: Coupled string-beam equations as a model of suspension bridges. Appl. Math. 44 (1999), 97–142. DOI 10.1023/A:1022257304738 | MR 1667633
[4] A.  Fonda, Y.  Schneider, and F.  Zanolin: Periodic oscillations for a nonlinear suspension bridge model. J.  Comput. Appl. Math. 52 (1994), 113–140. DOI 10.1016/0377-0427(94)90352-2 | MR 1310126
[5] H . Gajewski, K.  Gröger, and K.  Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. MR 0636412
[6] J.  Glover, A. C.  Lazer, and P. J.  Mc Kenna: Existence and stability of large scale nonlinear oscillations in suspension bridges. Z. Angew. Math. Phys. 40 (1989), 171–200. DOI 10.1007/BF00944997 | MR 0990626
[7] A.  Kufner, O.  John, and S. Fučík: Function Spaces. Academia, Prague, 1977. MR 0482102
[8] A. C.  Lazer, P. J.  Mc Kenna: Large scale oscillatory behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4 (1987), 244–274. DOI 10.1016/S0294-1449(16)30368-7 | MR 0898049
[9] A. C.  Lazer, P. J.  Mc Kenna: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Review 32 (1989), 537–578. DOI 10.1137/1032120 | MR 1084570
[10] A. C.  Lazer, W.  Walter: Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 98 (1987), 167–177. DOI 10.1007/BF00251232 | MR 0866720
[11] J. L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969. (French) MR 0259693 | Zbl 0189.40603
[12] J.  Malík: Variational formulations of some models of suspension and cable stayed bridges. European J. Mech.—Solids/A, Submitted.
[13] S. L.  Sobolev: Applications of Functional Analysis in Mathematical Physics. American Mathematical Society, Providence, 1963. MR 0165337 | Zbl 0123.09003
[14] G.  Tajčová: Mathematical models of suspension bridges. Appl. Math. 42 (1997), 451–480. DOI 10.1023/A:1022255113612 | MR 1475052
[15] R.  Walther, B.  Houriet, W. Isler, P.  Moïa, and J. F. Klein: Cable Stayed Bridges. Thomas Telford, , 1999.
[16] K.  Yosida: Functional analysis. Springer-Verlag, Berlin-Götingen-Heidelberg, 1965. Zbl 0126.11504
Partner of
EuDML logo