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ON DATA, HOMOGENIZATION OF CABLE SYSTEMS*
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(Received March 6, 2001)

Abstract. A model of a cable stayed bridge is proposed. This model describes the be-
haviour of the center span, the part between pylons, hung on one row of cable stays. The
existence, the uniqueness of a solution of a time independent problem and the continu-
ous dependence on data are proved. The existence and the uniqueness of a solution of a
linearized dynamic problem are proved. A homogenizing procedure making it possible to
replace cables by a continuous system is proposed. A nonlinear dynamic problem connected
with the homogenizing procedure is proposed and the existence and uniqueness of a solution
are proved. :

Keywords: cable stayed bridges, existence, uniqueness, continuous dependence on data,
homogenization of cable systems
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1. INTRODUCTION

The construction of cable stayed bridges is nowadays quite frequent in spite of be-
ing virtually unknown 40 years ago. The structure of cable stayed bridges resembles
suspension bridges. Some models of suspension bridges have been studied in [1]-[4],
(6], [8]-[10], [14].

In this paper we are going to study one model of a cable stayed bridge, depicted
in Fig. 1, which describes the behaviour of the center span, the part of the deck
between the pylons. More cable stayed bridge constructions are presented in the
monograph [15].. The motion of the center span is described by two functions cor-
responding to the deflection and the torsion of any cross section of the center span.

*This work was supported by Grant 105/99/1651 of the Grant Agency of the Czech
Republic.




We are going to pay attention to the existence and uniqueness of a solution, and
to its continuous dependence on the data. Let us notice that the cable stays are
modelled as non-linear strings, which means the restoring force due to a cable is
such that it strongly resists expansion, but does not restrict compression. Moreover,
we are going to deal with some homogenizing techniques which make it possible to
replace the cable stayed system with a continuous medium. The number of cable
stays in Fig. 1 is relatively small, but these numbers are much larger in real con-
structions. Thus homogenization techniques can make numerical approximations of
such problems easier.
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Figure 1.

2. VARIATIONAL FORMULATIONS

The main goal of this chapter is to formulate one problem which describes the
behaviour of the center span suspended by one row of cable stays. This problem is
depicted in Fig. 2.

Before writing down the variational equalities given in [12], let us mention that
these equalities were derived from the Hamilton variational principle in the linear
theory of elasticity. The derivation is based on the following hypotheses:

1. The central span is a homogeneous prism made of an orthotropic material whose

symmetry axes are parallel to z, y, 2, as depicted in Fig. 2.

2. Any cross section @ (see Fig. 2) perpendicular to the z-axis remains perpen-

dicular to the deformed z-axis which is only allowed to move in the vertical
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direction. Moreover, the y, z-axes, perpendicular to each other before the de-
formation of any cross section, remain perpendicular after the deformation (see
Fig. 3).

Figure 3.

Then the behaviour of the structure depicted in Fig. 2 can be described by u(z, t),
¢(z,t) defined on (0, L) x (0,T). The function u(z,t) corresponds to the deflection
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of the z-axis in the vertical direction and ¢(z,t) corresponds to the turning of Q. .
round the z-axis.
Let us define bilinear forms

L
(u,v)=/ wvdz,
Jo

L
ml(u,v)=/ Myuvdz,
Jo

L
ma(p, ) = /0 Mo dz,

/L 8%u 8%v

kl(u,'v) = Js K]Er—z'—a? d.’l),

L
_ Op OY
kz(‘Pﬂ/)) = ‘/0 K25;$ dz,

where M, Ma, K1, K, are constants which are given in [12] and generally depend on
the material properties and the geometry of the prism representing the center span.
The forms my(-,-), ma(-,-) are connected with the kinetic energy of vertical and
torsional vibrations, while the forms ki(:,-), k2(:,) correspond to the deformation
energy of these movements.

Let us define another bilinear form connected with the deformation energy of a
row of cables stays, as depicted in Fig. 4,

8
b(u,v) = Zk;u(zi, t)v(zs, t),
=1

where the coefficients k; depend on the length and the stiffness of the cable stays
attached to the center span in z;, and the angles between those cables and the center
span. The explicit shape of k; is to be found in [12].

The cables in real constructions are stressed, which means that the length of these
cables is shortened so that the cables loosen if the center span is bent upward by the
value d(z), as depicted in Fig 4. Moreover, the cables behave as non-linear strings,
which means that the restoring force due to the cable attached at z; is such that it
resists expansion if the deflection of the center span at z; in the upward direction
is less than d(z;), but does not resist compression in the opposite case. Thus the
deformation energy of the cable system in Fig. 2 is

5b(0(u +d), glu + ),

where g is a certain function. The function g(z) applied in [12] is equal to z+ =
max{0,z}, which corresponds to the loosening of cables. For mathematical reasons
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Figure 4.

we are going to deal with g(z) defined as follows:

. B 0 if zE(—OOaO)’
(2.1) 9(z) = z—¢ if € (2,00),

and g(z) is extended to the whole R so that it has continuous derivatives up to the
order 2 and is convex.

This function is depicted by the solid line in Fig. 5 while the dashed line corre-
sponds to z*. On the interval (0,¢) the function g(z) describes the relaxation of
cables at the moment when these cables start stretching. The center span is under
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Figure 5.

the influence of the gravitational force represented by Fi(z), F2(z) and the force of
wind represented by P;(z,t), P2(z,t). Then the linear forms (Fy,u), (P1,u), (F2,¢),
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(P2, ) correspond to the energy of external forces connected with the vertical and
the torsional vibrations. The dynamic equilibrium of the system depicted in Fig. 2
is a stationary point of the functional

T
Jwe)= [ L)t

where
1 ou Ju 1 1 Jp Oyp 1
£(w,0) = (6t 6t) gki(w ) +5ms (at E) ~ 3kale. %)
- §b(g(qud),g(qu d)) + (F1 + Pi,u) + (F2 + Py, ).

The functional above is defined on a set of sufficiently smooth functions on (0, L) x
(0,T). These functions satisfy the conditions

u(0,t) = u(L,t) = ¢(0,t) = p(L,t) =0, te(0,T),
u($70) = p,o((lt), u(IL', T) = /L](JJ), (p(.’L‘, 0) = 1/0(1'), ‘P(Iv T) = 1/1(1'), T € (Oa L)a

where po, 11, Vg, 11 are fixed functions on (0, L).
Let us define bilinear forms

L
61(u,v)=/ ©1uvdr,
Jo

L
52(0,9) = /0 8x00 dz,

where ©1, O, are the damping coefficients for the vertical and torsional vibrations.
Moreover, the forces induced by the wind can depend on ¢, as depicted in Fig. 6.
Thus these forces have to be described by P;(p,z,t), P2(p,z,t). Then the linear
forms (P1(p),v), (P2(¢), ) correspond to the energies of the external forces of wind.
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The above variational principle yields variational equalities which can be general-
ized by adding the damping terms. These equalities read as follows:

2
@2) mu(ZE0) + ki) +6( 52 ,0) + b5+ d),0) = (B + Pu(o) ),
2
mo(T2.0) + ko) + 83 (%2.,9) = (B + Pate), w),

where 2§(z) = (¢°(z))’ = 2g(z)g’(z). The functions u, v, ¢, ¢ defined on (0, L) x
(0,T) satisfy the conditions

(2.3) u(0,t) = u(L,t) = v(0,t) = v(L,t) =0, te(0,T),
¢(0,t) = o(L,t) = (0,t) = ¢(L,t) =0, t€(0,T),

u(z,0) = uo(e), gu(@0) =wm@), =€ 0,L)

0(z,0) = ¢o(@), 50,0 =a(a), T €(O,L),

where ug, u1, o, @1 are fixed functions representing the initial conditions for (2.2).
The functions u, ¢ are solutions to the above problem if (2.2) are fulfilled for any v,
¥ satisfying (2.3).

It is sometimes useful to study the time independent problem connected with the
above dynamic problem. The solution to that problem is a minimum of the functional

B(u,0) = i) + 3ha(0,0) + 0ol + ), gu + @) = (Fo,) — (Fy, ).

This functional is defined on a set of sufficiently smooth functions on (0, L). These
functions satisfy the conditions

u(0) = u(L) = ¢(0) = p(L) = 0.
The above formulation is equivalent to the variational equalities
(2.4) ki(u,v) + b(g(u + d),v) = (F1,v),
k2 (e, ¥) = (F2,9).
The functions u, v, ¢, ¢ defined on (0, L) satisfy the conditions
(2.5) u(0) = u(L) = v(0) = v(L) =0,
©(0) = (L) = %(0) = ¢(L) =0.

The strictly mathematical formulation of these problems is given in the subsequent
chapters. "




3. SOME PRELIMINARIES

The main goal of this chapter is to give a strictly mathematical formulation of the
problems mentioned in the previous chapter. Let us recall some results from the the-
ory of distributions with values in a Banach space V. If D((0,T')) is the space of test
functions with the usual topology, then distributions are linear continuous operators
from D((0,T)) to V with the weak topology, which means that if u: D((0,T)) — V
is a distribution and v € V*, then v(u): D((0,T)) — R is a usual distribution from
D*((0,T)), the space of usual distributions. The symbol D*((0,T),V) denotes the
space of V-valued distributions on (0,7). If u: (0,T) — V belongs to L!((0,T),V),
which is the space of Bochner integrable functions (see [5], [7]), we can define the
expression

T
(3.1) u(g) = /0 wpds,

where ¢ € D((0,T)). This expression belongs to D*((0,7T),V) and the transforma-
tion from L((0,T),V) to D*((0,T),V) defined by (3.1) is an injective imbedding.
The derivative u’ of u is defined as follows:

u'(p) = —u(¢’), ¢ €D((0,T))

and v’ € D*((0,T), V) as well. A more thorough introduction to the theory of vector
valued distributions and related topics as well as the proof of the following lemma
can be found, for instance, in [5].

Lemma 3.1. If f € L'((0,T),V) and its distributional derivative f' belongs to
L'((0,T),V), then f € C({(0,T),V), the space of continuous functions from (0, T)
to V. Moreover, the equality f(t2) — f(t1) = :1’ f'(t) ds holds for any t,,t2 € (0,T).

First of all let us generalize the definitions of m,(-,-), ma(-,-), k1(-,-), k2(,-),
61(-,-), 62(-,-) by replacing the constants My, M;, K;, K3, ©1, ©; by bounded
measurable non-negative functions defined on (0, L). We will use the same symbols
for these functions which satisfy the additional assumptions

(3.2) Mi(z) > e, Ma(z)>e, Ki(z)>e, Ko(z)>e, z€(0,L),

where € is a positive constant.
Let us denote

Vi = Hy((0,L)) N H?((0,L)), Va= Hy((0,L)),
W = L*((0,L)),



where H}((0,L)), H?((0,L)) are the Sobolev spaces formed by all functions in
L?((0,T)) whose first and second derivatives belong to L?((0, T')), respectively. More-
over, the expression u € H}((0, L)) means that u(0) = u(L) = 0. Both V; and V»
are Hilbert spaces equipped with the respective scalar products

L L
(u,v)y, = /0 {wv +u'v' +u"v"}dz, (p,¥)v, =/0 {e¥ + ¢'¢Y'} dz.

By virtue of the Poincaré inequality (see [7]) there exists C > 0 such that the
inequalities

(3.3) Cliully, < k1(w,u),  Cllolly, < k2(p, 9)

hold for any u € Vi, ¢ € Vo. The above definitions make the following natural
imbeddings possible:

(3.4) VicW, VaCW.

The bilinear form b(-,-) connected with the cable systems is bounded on V] because
this space can be imbedded in C((0, L)) and this imbedding is continuous (see [7]).

Let L2((0,T),X), where X is a Hilbert space, denote the space of all Bochner
measurable functions f: (0,T) — X satisfying

T 3
( / uf(s)**nxds) = I llza(o,1,x) < -

Let us recall that this is a Hilbert space equipped with the scalar product

T
/0 (£(5),9(5))  ds.

These facts together with the imbeddings (3.4) make the following imbeddings poss-
ible:

(3.5) L2((0,T), V1) C L*((0,T), W),
L*((0,T),Vz) Cc L*((0,T), W).

These spaces can be naturally imbedded into the spaces D*((0,T'), V4), D*((0,T), V),
D*((0,T),W).
Let us define the spaces

X1 ={u|ue L*(0,T), V1), u' € L*((0,T), 1), u" € L*((0,T), W)},
X2 = {‘P I pE L2((°7 T)) V2)7 WI € L2((0’T)"/2)’ ‘p” € Lz((OaT)a W)}7




where u', u”, ¢', ¢" are distributional derivatives in D*((0,T), V1), D*((0,T),
W), D*((0,T),Vs2), D*((0,T),W). We have applied the imbeddings (3.5) in the
definitions of X7, X5.

4. TIME INDEPENDENT PROBLEMS: EXISTENCE, UNIQUENESS, CONTINUOUS
DEPENDENCE ON DATA

In this chapter we deal with a time independent problem. We will prove the
existence, uniqueness and continuous dependence on the data.

Definition 4.1. Let Fy,F, € L?((0,L)), d € V3, then u € V;, ¢ € V, are a

solution to the problem A if (u, ) is a minimum of the functional

1 1 1
(4.1) ®(u, ) = Ski(u,u) + Ska(p,9) + 5blg(u +d), g(u + d))
- (Flau) - (F21<p)
on Vi x Vs
The above formulation is equivalent to the variational equalities

(4.2) k1(u,v) +b(g(u + d),v) = (F1,v),
k2 (p, %) = (F2,9)

which hold for all v € V, ¢ € Va.

Theorem 4.1. If the assumptions of Definition 4.1 are fulfilled, then there exist
u, which are a solution to A and this solution is unique.

Proof. The definition of & shows that this functional is convex and differen-
tiable, so it is weakly lower semi-continuous (see [5]). If we apply the estimates (3.3),
we have the inequality

(4.3) Cr(llully, + llelli,) = Callullv + llellve) < 2(u, ),

where C, C;, are positive constants independent of u, ¢. If [[u[|v,, [l¢]lv, — oo, then
(4.3) yields that ®(u, ) — oo, which means that ® is coercive. The properties of &
guarantee the existence of a solution to A (see [5]). The definition of ®(u, ) yields
that this functional is strictly convex, which guarantees the uniqueness of A. ]
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Let us consider k; € (0,00), z; € (0,L), j =1,...,8,

)

Ki(z) € L*((0,L)), Ki(z)>e>0
2e>0,

Ka(z) € L%((0, L)), Ka(z)
Fi,F € L*((0,1)),

where K, K, are the functions in the definitions of ki(-,-), k2(-,-) and z;, k;

j=1,...,8 are the terms in the definition of b(-,-). Then by virtue of Theorem 4.1
we can define a transformation

P(ky,... ks, z1,...,28, K1, Ko, F1, F3)

defined on [{0, 00)]® x [(0, L)]® x [L>=((0, L))]? x [L?((0, L))]?® with the range V; x V5.
This transformation assigns the solution (u, ) of A to the above data.

Theorem 4.2. The transformation P is continuous.

Proof. Let

(4.4) i1, K-k  inR, j=1,...,8,
Ki - K? Ki— KY in L*((0,L)),
Fi > F?, Fi— F) in L%*((0,L)).

If [u?, o' = P(Ki,... ki, 2%,... 28, Ki, Ki F§, F§), then

(4.5) ki (u',u?) + B3(0%, 7)) + b (§(u + d), u’) - b(§(d), u’)
= —b(g(d), ') + (F},v') + (F3,¢%),
where ki(-,-), k3(-,-), b*(:,-) correspond to K}, Kj, ki, z}, j = 1,...,8. Since

b*(g(u), v) is the derivative of the convex functional 1b*(g(u), g(u)) in the direction v,
the inequality

(46) bi(g(u)vu—v) —bi(g(v)’u_’v) =0

holds for all u,v € Vi (see [5]). If we consider (3.3) and the last inequality, then
(4.5) yields the inequality

(4.7) lu'llf, + 1%, < Cr + Calllwillve + 16°1va),
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where C;, Cy are positive constants common for all ¢. From (4.7) it follows that .
there exists a constant C such that

(4.8) lu’llvs <€, ll¢llv, <G,

which yields that there exist subsequences u™, ™ that weakly converge to u°, ©°
in V4, Vz, respectively. If we consider that V; Cc H!((0,L)) c C %((0, L)), then by
virtue of the Arzela-Ascoli theorem the subsequence u™ strongly converges to u° in
C({0,L)). If we consider that (u™,¢™) are solutions to the sequence of problems
mentioned above, we have

(4.9) K (u™,v) + 8°(g(u™ + d),v)
- = K (u™,v) — k[*(u™,v) + (F™ — F?,v) + b°(G(u™ + d),v)
—™(G(u™ + d),v) + (F7, ),
k3(0™, %) = k(0™ %) — k5 (@™, ¥) + (F* — F3, ) + (F5, ),

where v € V1, ¢ € V5. (4.4) and (4.8) yield
(4.10) @™, v) — k" (u™,v) = 0
k2™ %) — k3 (™, %) = 0.
The convergence of u™ in C((0,)) and (4.4) imply
(4.11) b2 (§(u™ + d),v) — b™(G(u™ + d),v) — 0.
The weak convergence of u™, o™ to u®, ©°, (4.10) and (4.11) yield

(4.12) k0w, v) + b°(§(u® + d),v) = (F?,v),
K@, %) = (F5,9),

which means that (u®,¢°) is a solution to .A. Then we can write

(4.13) K —u™, ul — u™) = kM (u™,u’ — u™) — K (u™, ul — u™)
—b%(3(u® + d),u® — u™)
+0™(G(u™ + d),u® —u™)
+ (FY — F",u® —u™),
K — o™ 0% —¢™) = k3 (™, 9% — ™) — K3 (™, 9" — ™)
+(F3 = F§",¢° — ™).

12



Due to the strong convergence of F{*, F* to FP, FJ in L?((0, L)), strong convergence
of u™, ¢™ to u®, ¢° in C({0,L)), (4.4) and (4.8), the right-hand sides of (4.13)
converge to zero. Then the estimates (3.3) yield the strong convergence of u™, o™
to u°, ¢° in Vi, V4, respectively. If we consider that (u°,¢P) is the unique solution
to A, the whole sequence (uf, p*) converges to (u°, ¢°), which gives the desired result.

O

Solving the last time independent problem, we admitted that the cables can loosen,
which was described by the function g. It is evident that the cables are fully stressed
in most cases so the inequalities

(4.14) u(z;) +d(z;) =22, j=1,...,8,

where ¢ is the term in (2.1), hold. Then the deformation energy of the cables is given
by the term ’

(4.15) %b(u+d—e,u+d—s),

which follows from the definition of g.
Let us settle a linear time independent problem which is connected with the prob-
lem A.

Definition 4.2. Let Fi,F> € L?((0,L)), d € Vi, then (u,p) € V; x Va is a
solution to the problem Aj if the variational equalities

(4.16) ki (u,v) + b(u + d — €,v) = (F1,v),
k2(¢,¢) = (F2a’¢)

hold for all v € V3, ¥ € V5.

It is evident that the assertions similar to those we proved for 4 can be proved
for the linear problem Aj,.

5. LINEARIZED DYNAMIC PROBLEMS: FORMULATION, EXISTENCE, UNIQUENESS

Let us assume that functions P (y, z,t), P>(y,z,t) defined on R x (0,L) x (0,T)
satisfy the modified Carathéodory conditions (MC):
1. P(y,z,t), a%P,-(y,a:, 1), %P,—(y,z, t), ¢ = 1,2 are continuous in y, ¢ for almost
every z and measurable for all y, ¢.
2. There exists p(z) € L?((0, L)) such that

7] .
Py, 0| <p@), |5P20)| <), i=12

13




3. There exists a constant C such that

%Pi(y’ z, t) < C~; = 172

These assumptions guarantee that P;(p(z,t),z,t), %P,-(go(a:, t),z,t), a%}:’i(cp(z, t),
z,t), i = 1,2 belong to L2((0, L) x (0, T)) for any measurable function ¢(z, t) defined
on (0, L)% (0, T). If we consider the definitions of the bilinear forms introduced above
and the fact that u € X;, ¢ € X3, d € V1, then the expressions m, (v”,v), ki (u,v),
b(g(u + d),v), 1(v',v), ma(¥",9), ka2(, %), 62(¢',9) belong to L*((0,T)) for any
veEW, Y el

Definition 5.1. Let d € Vi and F;, F, belong to L2((0,T)) and let P, P,
satisfy (MC). Then (u, ) € X; X X3 is a solution to the problem B if the equalities

(5.1) my (u”,v) + k1 (u,v) + 61 (u',v) + b(§(u + d),v) = (F1 + Pi(p),v),
ma (0", ) + ka(p,¥) + 82(¢",¥) = (F2 + Pa(v), %)

hold in L2((0,T)) for any v € V4, ¥ € V2. Moreover, the initial conditions

(5.2) u(0) = up, u'(0) =0,
¢(0) = o, ¥'(0)=0

‘are fulfilled, where (ug, o) is a solution to the problem A with the right-hand
sides Fi, F5.

Let us notice that the expressions (5.2) in this definition are correct. The func-
tions u, ¢ belong to C((0,T),V;), C({0,T),V2) and v, ¢’ to C({0,T), W), which
follows from Lemma 3.1.

The problem B corresponds to the situation when the central span quietly rests
on the cables at the moment ¢ = 0. Then it starts moving under the influence of
wind represented by P;, Ps.

If the gravitational force fully stresses the cables, if the force of wind is small
enough not to loosen the cables, and if we apply similar arguments as we did in
the previous chapter, the following problem properly describes the behaviour of our
model.

Definition 5.2. Let d € Vj, let Fi, F> belong to L?((0,T)) and let P;, P,
satisfy (MC). Then (u, ) € X; x X is a solution to the problem By, if the equalities

(5.3)  mi(u",v) + ki (u,v) + 61 (v, v) + b(u+d —e,v) = (F1 + Pi(p),v),
m2((p"7 Tl’) + k2(¢1 "/}) + 62(‘/),’ "/)) = (F2 + P2((P),'l,[))

14



hold in L%((0,T)) for any v € V4, 9 € V,. Moreover, the initial conditions

(5.4) u(0) = uo, u'(0) =0,
©(0) =po, ¢'(0)=0

are fulfilled, where (uo, o) is a solution to the problem A; with the right-hand
sides Fi, F5.

The proof of the existence will be based on the Galerkin method described, for
instance, in [5], [11]. All functional spaces that we have dealt with are separable,
which is essential for this method. Before we prove the basic result of this chapter,
let us start with one auxiliary lemma.

Lemma 5.1. Let f, € L?((0,T), X), where X is a separable Hilbert space and
fn weakly converge to fo in L?((0,T),X). Moreover, let there exist C > 0 such
that || fn(t)||x < C for any n and any t € (0,T). Then ||fo(t)||x < C for almost all
te(0,T).

Proof. Letz, € X, ||z.|| > C be a dense subset in {z € X, ||z|| > C}. Let us
set
Bo={t € (0,T) | |lfo(®lx > C},

T, —_ C
B; = {t € (0,7) | lIfo(t) — z;llx < M;__}
This yields By = |J B,. Due to the separability of X the sets B, are measur-

n=1
able (see [16]), which means that there exists j such that u(Bj;) # 0. If x;(s) is
the characteristic function of Bj, then by virtue of the weak convergence of f, the
inequality

T
/0 (o), z5)x x5(5)ds < C - u(B;)llz 1l x

holds. On the other hand, the definition of B; yields

T
/ (fo(s), 23)x x3(s) dz = / ((fols) — z5,25)x + l1z]1%) ds
0 B;
> / (lzs1% = 1 fols) — zllx llz;l1x) ds
B;

lsllx - €
> . . o
> [ st (st~ FAE =) as

C+ lzsllx

= u(B;j)llz;llx 5
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If we compare these inequalities, we have C > 1(C + ||z;||x), which contradicts
llz;llx > C. ]

Theorem 5.1. If the assumptions of Definition 5.2 are fulfilled, then there exists
a solution to By, and this solution is unique.

Proof. The proof is divided into five steps:

1. We construct a sequence of approximate solutions based on the Galerkin
method.

2 We establish a priori estimates which guarantee the existence of approximate
solutions on (0, T').

3. We establish a priori estimates which guarantee the existence of higher deriva-
tives of the approximate solutions on (0, 7).

4. We select a subsequence which converges to a solution of By,.

5. We prove the initial conditions (5.4).

Step 1. Let v;, ¥; be sequences of linearly independent elements of .V;, V, and
let the linear spans of these sequences be dense in V;, V5. Then the spans of these
sequences are dense in W as well.

For any m let us consider the expressions

Um(t) = Zfim(t)viv
i=1

Pm(t) =Y gim ()t
=1

and moreover, let the equalities
(5.5) v1 =uo Y1 = o,
where (up, o) is the solution to the problem Ay, hold.
Let fim, gim be solutions to the system of ordinary differential equations
(5:6)  ma(upm(t),v:) + ki (um(?),v:) + 01 (upn (t), 03) + b(um(t) +d —€,v:)
= (F1 + Pi(pm(t)), vi),
M (P (t), %:) + k2(om (t), ¥:) + 020 (8), 9:)
= (F2 + P2(em(t)), ¥i),

i=1,...,m. Moreover, let fi;, gim satisfy the initial conditions
(5.7) fim(0) =1, fim(0) =0,
glm(o) :17 gtm(o) :0, i=2,...,m,
fi.(0)=0, ¢..(0)=0, i=1,...,m.
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If we consider the definition of m; (-, -), m2(-,-), k1(-, ), k2(:,*), 61(-,-), d2(+,-) and
apply the Lebesgue dominanted convergence theorem, we can say that the functions
m m m m m
m iVi, Uj ), M i"/’ia"/}' ) kl Yivi, vj |, k? yiﬂ’b’/" ) 61 Yivi, V5 |,
1(Zevnvs). ma( Lty ) b (Zwoevs). ko (Lpivs). 1 (Zos )
m m
az(zyitll;,i[)j), b(Zy;vi +d- e,vj) defined on R™ are continuous, where j =
i=1 i=1
1,...,m. If we consider (MC) and the Lebesgue dominanted convergence theorem,
we can see that the functions

m m
(Fl (Zyi'wiyx,t)’vj)a (F2 (Zyi"/}iyzat)ij)
i=1 i=1
defined on R™ X (0, T") are continuous on this set. This means that we can apply the

theory of ordinary differential equations which guarantees the existence of a local
solution to the system (5.6).

Step 2. If we multiply (5.6) by f},,(t), g5,,(t) and sum these expressions, we have
(5.8)  mi(up(t), upm(t)) + ma(Pm(2), on (t) + K1 (um (£), um (2))
+ k2(om (t), o () + 01 (urn (t), umn () + 02(07n (), o1 (1))
+ b(um () + d — €,u,(t))
= (F1 + Pi(em (1), up (1) + (F2 + Pa(om(2)), orm (2))-
The expression (5.8) yields

(59) 55 {m (n(8), U () + (P (1), 6 (6) + Bx (m (8) um (0)

+ k2 (om(t), om(t)) + d(um(t) + d — e,um(t) + d — €)}
+ 01 (U (8), up (1) + 2(#0 (8), €' (2))
= (F1 + Pi(pm()), um (t)) + (F2 + Pa(eom(t)), @1 (t)),
which results in the equality
(5.10) M1 (U (2), Upn (t)) + M2(P1n (t), P (t)) + Kt (wm (2), um (2))
+ k2(om(t), om (1)) + b(um(t) + d — g, um(t) + d —¢€)
= m1 (U (0), U, (0) + m2(97 (0), 97, (0) + k1 (um (0), um (0))
+ k2(©m(0),9m (0)) + b(um(0) + d — €, um (0) + d — €)

2 /0 1 (ttn (5), U (5)) ds — 2 / 52(&n(5), @l (5)) ds
+2 /O (Fi + Py(0m(5)), i (s)) ds
+2/0 (Fs + Pa(om(s)), & (5)) ds.
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Relations (5.7), (5.10), (3.3) yield the inequality
(5.11) lurm (D1 + Il O + llum @13, + llon @113,

t
<C+C /0 Ul ()12 + 1@ ()12 } ds,

where C is a positive constant common for all m. Gronwall’s inequality and (5.11)
guarantee that the local solutions from Step I exist on the whole interval (0, T") and
these solutions satisfy the following estimates:

(5.12) 3C >0 YmeN Vte (0,T),
lum@llw <C, llem@®lw <C; llum@®)llvi <C, llem®)lv, < C.

Step 3. If we consider (5.5) and (5.7), then (5.6) implies the equalities
(5.13) mi (ur (0),v:) = (Pi(om(0)), v3),
m2 (¢ (0),91) = (Pa(om(0)), %),
which yields the estimates
(5.14) lum()llw < C, llemO)llw < C,

where C' is a constant common for all m.
If we differentiate the system (5.6) and multiply it by f7.(¢), g5, (¢), we have

(5.15)  ma(upn(t), um(t)) + ma(em(t), om(?))
+ k1 (up (£), u () + k2 (00n (£), 0 (8)) + 61 (urm (), s (2))
+ 02(@m (£), o (8)) + bl (2), u (t))

:(a—ya(@m(t))sa:,,(t) u (1)) + (e Pilom(@),uin(®)
+ (3 Palom(©)em(®,0(0) + (g Palom(®). £ )
The relation (5.15) yields

(516) -t (alh (0), w(0)) + a0 (), ¢l (0)

+ k1 (upy (t), up () + k2 (@ (8), 0 (8) + b(u, (2), ur (2))}
+ 61 (g, (£), uin (8)) + 62(01n (2), 1 (2))

= (55 Pr(om(O)¢n(®.n(0) + (5P (o (), 1)
+ (2 Palom(O)en (0,0 ®) + (5rP2(en(0). 00 (0),
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which results in the equality

(5.17)  ma(up (), up(8)) + ma(@in (), i (t))
+ k1 (up (8), U (1)) + k(0 (1), 0 (2)) + By (£), uer (8)
= my (up, (0), upn (0)) + m2 (¢, (0), 7 (0))
+ k1 (47 (0), 7 (0) + k2 (¢, (0), 97, (0)) + b(u7,,(0), ur, (0))

~2 [ i)t (oD ds =2 [ 8ot ) do

+2 [ (S Puom(@)n(s) + 3 Pom(6) 1)) s

+2 [ (2 Palom)6n(6) + 2 Palom (9D a(s)) .
From (3.7), (5.13), (5.17), (3.3) we obtain the inequality

(5.18) lum @l + Nem @l + lum @I, + lem @I,

<C+C / ()1 + e (s) 1} ds,

where C is a positive constant common for all m. Gronwall’s inequality and (5.18)
guarantee that the approximate solutions satisfy the following estimates:

(5.19) IC>0VmeNVte (0,T),
lum®llw < C, llem®llw < C, llum@®llvy <C, llem@llve < C.

Step 4. The estimates (5.12), (5.19) yield that the sequences um(t), u.,(t) are
bounded in L2((0,T),V1), om(t), ©.,(t) are bounded in L3((0,T),V>2) and u” (t),
¢/ (t) are bounded in L?((0,T),W). These functional spaces are reflexive, which
means that there exist subsequences w(t), u;(t), u}'(t) @i(t), ¢;(t), ¢/ (t) weakly
converging to u(t), v(t), w(t), ¢(t), ¥(¢), v(¢) in the corresponding spaces. The weak
convergence of these subsequences implies that the distributional derivatives of u(t),
¢(t) in L%((0,T), V1), L%((0,T), V2), L*((0,T), W) exist and are equal to v(t), w(t),
¥(t), v(t). In view of the above mentioned facts, we have

(5.20) hm/ my (u] (t),v)0(t) dt = / my (u”(t),v)0(t) dt,
Jim ] ma (! (6), $)6(2) dt = / ma (" (), $)6(2) dt,
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T T
lun/ k1 (we(t),v)0(¢) dt = / k1(u(t),v)0(t) dt,
=00 Jy 0
T T
lim [ kae@.060dt= [ ke, w00 d,
% Jo 0
T T
lim / 51l (1), v)6(t) dt = / 51 (2), v)6(t) dt,
=00 Jo 0
T T
im [ a0 = [ 56000
T T
[lim / b(u(t) +d —e,v)0(t)dt = / b(u(t) + d —&,v)0(t) dt,
where v, 9, 0 are arbitrary functions from Vi, V2, D((0,T')). Moreover, it follows from
the definition of distributional derivatives that u;, ¢; belong to H!((0,L) x (0,T))
and weakly converge to u, ¢ in this space. Taking into account that u;, ; converge

to u, ¢ in L2((0,T) x (0, L)), which follows from the Ehrling compactness theorem
(see [7]), then by virtue of the Lebesgue dominanted convergence theorem we have

T T
(5.21) lim [ Ao 0p0a= [ (R0
OT T
lim [ (Pa(e@) e dt= [ (Palo©), w10t dt,
0 0
where v, 9, 0 are arbitrary.

If we consider (5.12), (5.19), (5.20), (5.21), Lemma 5.1 and the fact that the linear
spans of v;, ¥; form dense subsets in V;, V2, then the equalities (5.3) hold.

Step 5. In view of the definition of X;, X2 we can write

(5.22) / (W (£), v, 8(2) dt = [ (u(t), v)v, 0 (t) dt,
/ (@ (), )v6(8) dt = / (), D)0 (1) dt
/ (' (8), ) wO(t) dt = / (' (&), v)w (8) dt,
0T T
/0 (@ (1), Bywb(e) dt = / (), 0w (8) dt,
where v, 1, 0 are arbitrary functions from V;, Vo, D((0,T)). From the defini-

tion of X;, X2 and (5.22) it follows that the expressions (u(t),v)v,, (¢(t),¥)vs,
(W' (t),v)w, (¢'(t),¥)w, as functions defined on (0,T), belong to L%((0,T)) and
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have the generalized derivatives (u'(t), v)v;, (¢'(t), V) v, (u"(t),v)w, (¢"(t),¥)w so
that they belong to H'((0,7T')). Moreover, the sequences (u;(t),v)v;, (¢i(t),¥)vz,
(ul(t), v)w, (¢}(t),¥)w weakly converge to those functions in H!((0,T)). Since the
imbedding H'((0,T)) C C((0,T)) is compact, those sequences strongly converge in
C({0,T)). Then (5.7) yields the initial conditions (5.4).

Uniqueness. Let the problem By have two solutions (u1,¢1), (u2,¥2) and let
vV =1u; — Uz, Y = @1 — @s. By virtue of Lemma 3.1 we have

5(_ﬁ{ml(u (),v'(t)) + ma(¥' (t), %' (t))

+ k1 (v(t),v(2)) + k2(9(2), %(2)) + b(v(t),v(?))}
+81(v'(2), () + 02(4' (2), ¥ (1))
= (Pi(p1(t)) = Pu(p2(2)),v' () + (P2(@1(t)) — Pa(p2(2)), ¢’ (¢))-

The last expression yields the equality

(5.23) my (v'(2), V(1)) +ma (4’ (), ' ()
+ ki (v(t),v(t)) + k2 ($(2), %(t)) + b(v(t), v(t))

—2/ 81! (s),v'(s)) ds — 2 /521/;(3 ),9/(s)) ds
2 / (Pu(1(5)) = Pi(a(s)),v'(s)) ds
2 [ (Palr(s))  Palia(s)), 9/(5)) ds.

The conditions (MC) imply the inequalities

(5.24) [(Pr(1 (1)) — Pa(p2(t)), v' ()] < CUIw @I, + v @)1 ),
[(Pa(1 () = Pa(2(t)), ¥ ()] < CUUIRMOIT, + Il¥' )11y,

where C is a positive constant. If we consider (5.23), (5.24) and the inequalities (3.3),
we can write

(5.25) I @1 + 1O, + @1, + @13,
<C / ')y + 1)y + (s)I2, } ds,

where C is a positive constant. By virtue of Gronwall’s inequality, (5.25) yields the
uniqueness of this problem. O
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Proposition 5.1. Let the assumptions of Theorem 5.1 be fulfilled, let (u, ) be
a solution to the problem By, and let the functions ©,, ©2 describing the damping
vanish. Then the equalities

(5.26) Ei(ty) — Er(t) = 2(Fl + Pi(p(s)),u'(s)) ds,

Ey(tz) — Ex(t) = (F2 + Py(p(s)),¢'(s)) ds

t1

hold for any ty,t; € (0,T), where
By(t) = %ml(u’(t),u7(t)) + %kl (u(t), u(t)) + %b(u(t) +d—eult)+d-oe),
Ea(t) = 3ma(' (1), () + 3kal(0), 0(0)).

Proof. Since (u,) are a solution to By, we have
(5.27) ma(u” (t),u'(t)) + k1 (u(t),u' () + b(u(t) +d —€,u'(t)) -
= (F1 + Pi(p(2)), %' (¢)),
ma (" (), ' (1)) + ka2 ((t), ¢’ (1)) = (F2 + Pa((1)), ¢' (1))
The equalities (5.27) and Lemma 3.1 yield

(5.28) %%{ml(u'(t), o' (8)) + ka (u(t), u(t)) + b(u(t) + d — e, u(t) + d — )}
= (F + Pi(p(2)),u'(t)),
L8 ma(@' (0,4 (1)) + ka(0(t), )} = (B + Pa(o(2)), /(1)
After integrating the equation (5.28) from #; to t2, we obtain the desired result. O

Let us notice that E;(t), Ex(t) correspond to the total energy of the vertical and
torsional vibrations of the system depicted in Fig. 2. The damping is neglected. The
right-hand sides in (5.26) correspond to the change of the energy of the external
forces. Thus the equations express the law of energy conservation.

Let P(y,z,t) be defined on R x (0, L) x (0,T") and satisfy the assumptions (MC),
then we can define

II1Plls, = sup ”P(y7'at)“L2((O,L))a
y€ER,t€(0,T)
1Pl= s || 2p@-o
ver, te(0,7) ! OY L>=((0,L))
o
1Plls, = yen,stuelzo,"r)llap(y”t) L2((0,L))’
IPlls = I Plls; + |Plls; + | Plls,-
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Proposition 5.2. Let the assumptions of Theorem 5.1 be fulfilled and (ug, o)
be a solution to the time independent problem Aj, with the right-hand sides Fy, F5.
Then there exists a positive constant C independent of Fy, F3, Py, P; such that the
inequalities

(5.29) [lw — uoll2((0,7),v2) < CUIP1lls + [[P2ll5),
el 20, 7),12) < C(IIP1lls + | P2lls),
lu"llL2(0,7),w) < CUIP1lls + |1 P2lls),
<C
<C
<C

lle = wollL2((0,1),v2) ([|P1||5_+ 1P2lls),
(I1P:lls + 1 P2lls),

(IPells + NP2 lls)

|]<P'||L2((0,T),V2)

le"ll L2(0,),w)

hold, where (u, ) is a solution to By, and uo, o in (5.29) are understood as constant
functions defined on (0,T).

Proof. If the inequalities (5.29) hold for the approximate solution um(t), Ym(t)
in the proof of Theorem 5.1 with a constant C independent, of m, then by virtue of
the weak convergence of these approximate solutions the inequalities (5.29) remain
fulfilled for the solutions u, ¢ to By. Let us assume that the equations
(530) k](’u,o,‘vj) +b(’u.() +d—€,’Uj) = (Fl,’Uj),

k2(po,¥;) = (F2,%;)
hold, where v;, 1; are the same function as in the proof of Theorem 5.1. If we
substitute (5.30) into (5.6), we have
(5.31)  ma(up, (t),v5) + k1 (um (8) — u®,v;) + &1 (ur, (2),v5) + b(wm(t) — uo,v;5)
= (Pr(em(t)),v5),
M1 (P (), ¥5) + k2(Pm () — @o,%;) + 82 (r (2),%5)
= (Pa(em (1)), %5)-

If we apply the same arguments as in Theorem 5.1, then (5.31) implies the equality

(5.32)  my(up, (), up, (t) + ma2(07, (1), ©1n () + K1 (um (t) — o, um (t) — o)
+ k2(om (t) — @0, om(t) — @o) + b(um(t) — uo, um(t) — uo)

= -2 /0 51 (ul (5), i (5)) ds — 2 /0 52 (5), @l (5)) ds
+2 /0 (Pi(9m(s)), tln(s)) ds + 2 /0 (Pa(@m(s)), ¢ln (5)) ds.
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The equality (5.32) yields the inequality

(5-33) lum @Iy + lom @Iy + llum(®) — uollY, + llom(®) — woll?,
< C/O {1 (I + 107w + 1P (om ()

+ [1P2(om (s)) Iy } ds.

Now (5.33) and Gronwall’s inequality imply the estimates 1 and 4 from (5.29).
Due to the equalities (5.13) and (5.17), we have the inequality 4

(5:34)  |lum@liy + lem®Olly + llum @Y, + lem @,
t
< C(I1Pulls + [IP2lls) + C/O {lum () + Nlom ()15 } ds.
The inequality (5.34) and Gronwall’s inequality yield the estimates 2, 3, 5, 6 in (5.29).
O

Let C ({0, L) x (0,T)) be the space of Hélder continuous functions with the norm

u(zy,y1) — u(ze,
sup fu(w,y)+  sup LuC) uGnw)l

1 I-
2€(0,L) s1,z260,0) T2 — 21|72 +|y2 — 1|2
y€(0,T) y1,y2€(0,T)

T1#Z2, Y1FY2

(5.35) Ilullci ({0,L)x(0,T)) =

Lemma 5.2. Ifu € L?((0,T),X), v’ € L?((0,T), X), where X C H*((0,L)) is
a continuous imbedding, then u € C%({0, L) x (0,T)) and the inequality

”ullci«ﬂ,L)X(O,T)) s C("u”[z2((0,T),X) + "“’"L2((0,T),X))

holds, where C is a constant independent of u.

Proof. By virtue of Lemma 3.1, u(t) is continuous as a function from (0, T")

to X and the inequality
T 1 .
< ( | 1wk ds) ita — ]}
X 0

holds for any t;,t; € (0,T). Moreover, the inequality

636l -uwlx = | [ (5) ds

(5.37) S(l(l)PT) lu@®)llx < CllullL2(o,1),x) + I14'll2((0,7),x))
te (0,
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holds, where C is independent of u. Let us admit that (5.37) does not hold, then
there exists sequences u;,t; € (0,T) such that

(5.38) lwill 20,1y, x) + lluillL2(0,1),x) = 1,
llui(t:)llx >4,

but the first relation in (5.38) contradicts (5.36). Let us estimate the terms on the
right-hand side of the inequality

(6.39)  [u(z1,t1) — u(z2, t2)| < [u(z1,t1) — ulz1, t2)| + [u(z1,t2) — u(z2, t2)|-

It is known that H((0, L)) is continuously imbedded in C 2((0, L)) with the norm

"U"C%((o Ly~ Sup [v(z)|+  sup M
, z€(0,L) z1,22€(0,L) |.’l?2 — :L‘llz
zl#tz

Hence we can write

(5.40) [u(z1,t1) — w(z1,t2)| < Cllu(ts) — w(t2)ll#((0,1))-
From the last inequality and the estimate (5.36) we obtain

(5.41) lu(z1,t1) — u(z1, t2)| < Cllw'll 20,1y, 5) Itz — ta ]2
Moreover, we have

(5.42) lu(z1, t2) = u(®@2,2)] < Cllu(te) | o,y w2 — 7.

Then the desired result follows from (4.52), (5.37), (5.41) and (5.39). O

Due to the fact that V4, Va2 are continuously imbedded in H*((0, L)) and to the
results of Theorem 5.1, we can see that both u and ¢ belong to C% ({0, L) x (0, T)).

Proposition 5.3. Let the assumptions of Theorem 5.1 be fulfilled, let (ug, o)
be a solution to Ay with the right-hand sides F, Fs, let the inequalities

(uwo +d)(zj) >2, j=1,...,8
hold and let the terms ||Py||s, | Pz||s be sufficiently small. Then the inequalities
(u+d)(zj,t) >e, j=1,...,8

hold for any t € (0,T).

Proof. The proof is an easy consequence of Proposition 5.2, Lemma 5.2 and
the remark after that lemma. a
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The last proposition describes the following fact: If the gravitation, represented .
by Fi, F,, tightens the cables, then the strength of wind, represented by P, Ps,
does not loosen the cables if this strength is sufficiently small. Similar problems
were discussed in [2], [3], [10].

Let us note that Proposition 5.2 yields the existence of a solution to the nonlin-
ear problem B if the terms ||P;||s, || P:]ls are sufficiently small and the gravitation
represented by Fy, F tightens all cables.

6. HOMOGENIZATION OF CABLE SYSTEMS: b-h CONVERGENCE

The center span in our model depicted in Figure 2 is suspended by 8 cables, but it
is obvious that the above theory works for any number of cables. Real constructions
are suspended by much larger numbers of cables. The main goal of this chapter is
to replace the cables with a continuous medium which asymptotically describes the
behaviour of the cables. Let us define the bilinear form

L
h(u,v):/ zuvdz,
0

where z € L*=((0, L)).

Deﬁnition 6.1. Let n; be an increasing sequence of natural numbers, let
{zi}iL,, {Ki}L, satisfy 0 < 2} <25 < ... < sL ki >0 for any i = 1,2,.
and let z € L=((0, L)) satisfy z(z) > 0. Then {z}}7%,, {ki}3<, b-h converge to 2 1f

the relation e .
ilir&Zk;f(z;i):/ zf dz
j=1 0
holds for all f € C({0,L)). Moreover, let b(u,v) denote the bilinear forms
Z kju(z})v(z}).

This definition describe the process in which one cable system is being gradually
replaced by another cable system with a larger number of thinner cables.

Definition 6.2. Let Fi,F, € L2((0,L)), d € V1. Then (u,p) € Vi x Vo is a
solution to the problem £ if the equalities

kl(uv U) + h(g(u’ + d),’l)) = (F],'U),
k2(ﬂov¢) = (F2a¢)

hold for any v € V;, ¥ € V3.
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Definition 6.3. Let Fy,F> € L?((0,L)), d € V1. Then (u,p) € V4 x Va is a
solution to the problem &, if the equalities
ki(u,v) + h(u + d — €,v) = (F1,v),
kZ(QO’,d)) = (F2a¢)
hold for any v € V4, ¢ € V5.

Let us notice that these problems are uniquely solvable. The proof of this assertion
is parallel to the proof of Theorem 4.1.

Theorem 6.1. Let {}};%,, {ki}}%, b-h converge to z € L=((0,L)) and let

(u?, ¢%) be solutions to the sequence of the problems A with the bilinear forms b*(-, -)

corresponding to {z%}7%,, {k;};Z,. Then

ut = u® in W,
(pi - (po in Vz,
where (u°, ©°) is a solution to € with the bilinear form h(-,-) corresponding to z.

Proof. The definition of the b-h convergence and the uniform boundedness
theorem for functionals on C((0, L)) yield

(6.1) 6% (u, v)| < Cllulleo,Ly lvlicio, Ly

where C is a positive constant independent of i, u, v.
From Definition 5.2 it follows that ¢* = ¢° and we can only study the sequence u*.
This sequence satisfies the inequality
(6.2) Cllu'llfy < k(' ') + b (g(u’ + d),u’) — b'(§(d), u’)
= - bl(g(d),ul) + (Fl7ui)1
where C is independent of 7. The last inequality is a consequence of the estimate (4.6)
which holds in this case for the same reasons.

Since V; is continuously imbedded to C({0, L)), the estimate (6.1) yields the in-
equality

(63) —b'(§(d), w') + (F1, ') < Cillui|lvs,

where C is independent of i. The inequalities (6.2), (6.3) yield that there exists a
constant C such that

(6.4) luillv <€,
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where C is independent of i. From (6.4) it follows that there exists a subsequence u/
of the sequence u’ which weakly converges to «° in V;. Taking into account that
Vi C H((0, L)) and H'((0, L)) can be continuously imbedded in C'z ({0, L)) (see [7]),
by virtue of the Arzela-Ascoli theorem we can assert that u’ converges to u° in
C({0, L)). Moreover, u’ satisfy the equations

(6.5)  ki(u,v) +h(§(w +d),v) = h(G(u’ +d),v) - ¥ (G’ +d),v) + (F1,0),

where v is an arbitrary element from V;. Owing to the fact that v/ — u° in C({0, L)),
the estimate (6.1) and the b-h convergence, we have

h(§(w? + d),v) = h(G(u® + d),v) = 0,
h(g(u® + d),v) — ¥ (§(u® + d),v) = 0,
b (G(u® + d),v) — ¥ (§(u’ +d),v) =0

if j = oo, which yields
(6.6) h(G(u? + d),v) — ¥ (G(w + d),v) = 0

if j = o0o. From (6.5), (6.6) and the weak convergence of u’ to u° in V; it follows
that (u%,¢P) is a solution to £. This fact yields that there exists C such that the
inequality

6.7 Cllvi — 4% <k uj—uo,uj—uo
Vi

= h(§(° + d),u — u) — b (§(u? + d), - u)

holds. If we consider (6.1), the weak convergence of u’ to u® in V;, the strong
convergence of u/ tou® in C((0, L)), then (3.3) and (6.6) imply the strong convergence
of u/ to u° in V;. Moreover, (u,°) is the unique solution to £, which means that
the whole sequence u® converges to u° in V;. O

It is evident that we can prove the same theorem for the problems Ay, £;. Let
us formulate other two dynamic problems F, F;, and study the connection between
the problems By, F|.

Definition 6.4. Let d € V; and Fy, F belong to L2((0,T')) and let Py, P; satisfy
(MC). Then u € X;, ¢ € X; are a solution to the problem F if the equalities

my (u”,v) + k1 (u,v) + 61 (v, v) + h(§(u + d),v) = (F1 + Pi(p),v),
m2(<p", 'l/)) + k2(<pv ¢) + 52(§0,7 T/’) = (F2 + P2((P),¢)
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hold in L2((0,T')) for any v € V4, ¢ € V5. Moreover, the initial conditions

u(0) =up, u'(0)=0,
©(0) = o, ¢'(0)=0

are fulfilled, where ug, @o are a solution to the problem £ with the right-hand sides Fj,
F.

Definition 6.5. Let d € V; and Fy, F; belong to L%((0,T)) and let Py, P;
satisfy (MC). Then (u, ) € X; X X3 is a solution to the problem Fj, if the equalities

(6.8) my(u’,v) + ki(u,v) + & (u',v) + h(u + d — &,v) = (F1 + Pi(yp),v),
ma (9", 9) + k2, ¥) + 82(¢', %) = (F2 + Pa(), )

hold in L2((0,T)) for any v € Vi, ¥ € V2. Moreover, the initial conditions

(6.9) u(0) =up, u'(0)=0,
©(0) =po, ¢'(0)=0

are fulfilled, where (ug, o) is a solution to the problem &; with the right-hand
sides Fi, F5.

It is evident that the problem Fj has a unique solution. The proof is parallel to
that of Theorem 5.1.

Theorem 6.2. Let the assumptions of Theorem 5.1 be fulfilled, let {z; jamy
{ki}3Z, b-h converge to z € L=((0, L)) and let u?, ¢* be solutions to the sequence of
the problems By, with the bilinear forms b'(-,-) corresponding to {z}}7%,, {ki}}<,.

j=10
Then

(6.10) ut=u®, o' —=¢® in C({0,L) x (0,T)),
ut 2w, ot =% in L2((0,T),V1), L%((0,T),V2),
P 'U'IO, ‘p” - (p/O in L2((01 T)7 Vl)v L2((0?T)’ V2)a

% " =" in L*((0,T),W),

ul
ni 7 i
u"t =

where (u°, ¢°) is a solution to F; with the bilinear form h(-,-) corresponding to z.

Proof. If we change the form b(-,-) for bi(-,-) in the equations (5.8), (5.9) and
(5.10), we can see that all approximate solutions to the sequence of the problems By,
corresponding to bi(-,-) satisfy the inequality (5.11), where C is independent of i.
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The equation (5.13) is fulfilled for the approximate solutions to the same sequence
of problems and the constant C in (5.14) is independent of i. If we replace the
form b(-,-) by b*(-,-) in the equations (5.15), (5.16) and (5.17), we can see that the
approximate solutions satisfy the inequality (5.18), where C is independent of i.

From the above considerations it follows that those approximate solutions satisfy
the estimates (5.12) and (5.19) with C independent of 7. This yields that the approxi-
mate solutions and their first derivatives are bounded in L2((0,T), V1), L2((0,T), V2)
and their second derivatives in L?((0,T), W). So the sequences of solutions u?, ¢ to
the sequence of the problems B, with the bilinear forms bi(-,-) satisfy the following
estimates:

(6.11) 3IC>0VieN
luill2¢0,1),v1) < C " llL2o0,1), 1) < C, 1" L2019y, w) < C,
el 20,1y, va) < Cy 119" 20,1, v2) < C, 110" Il L2((0,),w) < C-

The estimates (6.11) yield that there exist u® € L2((0,T), V1), ¢° € L2k(0,T), Va),
such that v® € L2((0,T),V1), ¢'° € L2((0,T),V2), uw'® € L2((0,T),W), ¢"° €
L?((0,T), W), and subsequences u’, ¢’ of the sequences u’, ¢* which satisfy

(6.12) w —=ul, o =% in L2((0,7),V1), L%((0,T),Va),
u? = u® @7 = in L2((0,T),V1), L*((0,T),Va),
u"j—‘u"O, (p//]'__\gono in L2((O,T),W).

Since u?, ¢’ are the solutions to the problems B;, with the bilinear forms (-, ),
then we have the equalities

T . . . .
(6.13) / (ma(w”,0) + by (u,v) + 61w, v) + h(u? + d — €,v)) dt
0
T
= / {(Fy + Py (¢?),v) + h(u? +d —€,v) — ¥ (v + d —,v)} dt,
0
T . . .
[ el 0) + ka0 0) + bl )}
0
T .
= [ (Et Pt w)at
0
that are fulfilled for any v € L?((0,T),V1), ¥ € L?((0,T),Vz), which is an easy
consequence of Definition 5.2.

Lemma 5.2 yields that the sequences uf, ¢* are bounded in C2 ({0, L) x (0,T)),
so the subsequences u’, @7 strongly converge to u°, ¢° in C({0, L) x (0,T)). Taking
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into account the definition of the b-h convergence, the inequality (6.1) and (MC), we
have the relations

T
(6.14) lim h(u! +d—e,v) — b (w/ +d—e,v)dt =0,

j—oo Jo
T T
. 1 _ 0
jm [(EAma= [ va

T T
Jim / (Pa(¢?), ) dt = / (Pa(¢°), 9) dt.

From the equations (6.13), the relations (6.14), and (6.12) it follows that u®, (°
satisfy the equations (6.8). If we follow the ideas of Step 5 in Theorem 5.1 and
consider Theorem 6.1, we can see that u®, ©° satisfy the initial conditions (6.9), so
(u®,¢?) is a solution to the problem F,. Since this solution is unique, we have (6.10).

O

Definition 6.6. Let z; € L°°((0,L)) be a sequence of functions satisfying
zi(x) > 0 and let {z;}7_,, {k;j}7-; be two finite sequences of numbers satisfying

€ (0,L), k; >0, j =1,...,n. Then the sequence z; h-b converges to {zj};-‘zl,
{k;}3—, if for any f € C({0, L)) the relation

L n
lim zifdx = kif(x;
Jim [ > kif(e

holds. Moreover, let hi(u,v) denote the bilinear form fOL z;uvdz.

Theorem 6.3. Let z; € L*((0,L)) h-b converge to {z;}7_,, {k;j}}_, and let
u?, ¢/ be solutions to the sequence of the problems £ with the bilinear forms hi(-,-)
corresponding to z;. Then

vt > u® in W,
¢ = ¢° in V,,

where (u®,°) is a solution to the problem A with the bilinear form b(-,-) corre-
sponding to {z;}7_,, {k;i}5=1-

Theorem 6.4. Let the assumptions of Theorem 5.1 be fulfilled, let z; €
L>((0, L)) h-b converge to {z;}7_;, {k;}}-,, and u*, ¢* be solutions to the sequence
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of the problems F, with the bilinear forms h*(-,-) corresponding to z;. Then

ut =1’ o' = ¢  in C(0,L) x (0,T)),
ut = u®, ot =% in L2((0,T), Vi), L3((0,T),Vs),
Taw® o= in L¥(0,7), V1), L*((0,T),Va),

% 9" =" in L¥((0,T),W),

ul

ni "
u —u

where (u®,¢°) is a solution to By with the bilinear form b(-,-) corresponding to
{=5}550 {5372,

Proof. The proofs of Theorem 6.3 and Theorem 6.4 are parallel to the proofs
of Theorem 6.1 and Theorem 6.2. We only have to replace b(,-), h(:,-) by hi(-,-),
b(-, ). | 0

The above results show that the problems £, £, ; approximate the behaviour
of the construction depicted in Fig. 2 with both dense cable systems and distinct
cables.

7. TWO NONLINEAR DYNAMIC PROBLEMS:
FORMULATION, EXISTENCE, UNIQUENESS

In the preceding chapters above we studied some relations between the nonlinear
problems A and £ and between the linearized problems By and . These problems
approximate each other. In this chapter we are going to study the two nonlinear
problems F, G connected with B and prove the existence and uniqueness of solutions
to these problems.

Theorem 7.1. If the assumptions of Definition 6.4 are fulfilled, then there exists
a solution to F and this solution is unique.

Proof. The proof is divided into the same five steps as in the proof of Theo-
rem 5.1 and follows similar arguments so we briefly describe the differences.

Step 1. Let v;, ¥; be sequences of linearly independent elements of V;, V2 and let
the linear spans of these sequences be dense in V;, V; as well as in W.

For any m let

um(t) = Zfim(t) Vi,
=1

Pm(t) = D _ gim(t)¥
i=1
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be approximate solutions which satisfy the system of ordinary differential equations

(7.1) mi (um, (), vi) + k1 (um (£), vi) + 61 (uiy (8),v:) + R(G(um(t) + d), v;)
= (F1 + Pi(pm(t)),v:),
ma (@ (t), ¥s) + k2(©m (t), %) + 02(07a (8),¥:) = (F2 + Pa(om(t)), %),

i = 1,...,m. Moreover, fim, gim satisfy the initial conditions (5.5), (5.7). The
existence of a local solution can be proved as in Theorem 5.1.
Step 2. If we multiply (7.1) by f].,(¢), g (t) and sum these expressions, we have

(7.2)  ma(um(t), um () + m2(@7 (2), n (8)) + K (um (2), uin (2))
+ k2(om (2), 9 () + 61 (urn (8), un (8)) + 82(n (8), @ (1))
+ h(G(um(t) + d), urn (£))
= (F1 + Pi(pm(t), uin () + (F2 + Pa(om(2), @0 (2))-

The relation (7.2) yields

(7.3) 2 & {m1 (U (), uin (8)) + M (@ (8), @ (1)) + K (um (2), um(t))
+ k2(om (2), om (1)) + h(g(um(t) + d), g(um(t) + d))}
+ 01 (upn (£), un (8)) + 02(07 (), ¢ (1))
= (F1 + Pi(om (1), upm (8) + (F2 + Pa(om (1)), @n (1))

If we follow the arguments of Step 2 in the proof of Theorem 5.1, we get the esti-
mates (5.12).

Step 3. If we consider (5.5) and (5.7), then (7.1) implies the equalities (5 13) and
the estimates (5.14).

If we differentiate the system (7.1) and multiply it by f};,(t), gj(t), we obtain

(7.4)  ma(up(t), uin(8) + ma (P (t), O (t)) + kr (upn (2), um (¢))
+ k2 (0 (8), o (1) + 61 (up (2), upn () + 82( 0 (2), @ (1))
+ h(§ (um(t) + d)ur, (t), urn (1))

= (iplapm(t)yp’m(t),u;;(t)) + (gPl(wm(t)),uCL(t))
( Pa(pm ()l (), 1, (t)) (atP2(<Pm(t)) Pm (t))
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The relation (7.4) yields

1d

(7.5) 3q%

S (W (8), 6 (0) + ma (P (8), @l (1)) + Fa (i (8), (1)
+ kol (8), tp:n(t)} + h(§ (un(t) + D (8), ()
+ 81 (8), U (8)) + 82 (), ¢l (1)
= (3 PemO)6m(®,un(®) + (5P lom(@), 1 (0)

( Pa(@mit)frm (), o () + ( Pa(em(t),0m(®),
which results in the equality

(7.6)  mi(um(t), um (t)) + ma(@p, (t), O (8) + ki (uzn (), uin (2))
+ k2 (¢ (1), 01 (1))
= m (t, (0), up, (0)) + ma2(¢], (0), 07 (0) + ki (u,,(0), w7, (0))

+ Ra(n 09 ) = 2 [ @ 1 (5) + i ()16 (9) di
—2 [ Gt ds 2 [ (oo, o) d
+2 [ (& Rulom(0)en(s) + G Plom()0a(5)) ds

+2 /0 (%5(%(3))%(5) + %Pz(wm(s)),cp’,;(s)) ds.

If we follow the arguments in the proof of Theorem 5.1 and consider the structure
of the bilinear form h(-,-) and the function g, we have the estimates (5.19).

Step 4. The proof of this step is almost parallel to the corresponding step in the
proof of Theorem 5.1 with the exception represented by the equality

T T
(77 jim /0 h(G(u(®) + d),)6(t) dt = /0 h(G(u(t) + d), v)6(t) dt,

where v, v,  are arbitrary functions from V;, V2, D((0,T)). Moreover, from the
definition of distributional derivatives it follows that wu;, ¢; belong to H'((0,L) x
(0,T)) and weakly converge to u, ¢ in this space. If we note that u;, ; converge to u,
¢ in L2((0,T) % (0, L)), which follows from the Ehrling compactness theorem (see [7]),
then by virtue of the Lebesgue dominated convergence theorem the equality (7.7) is
established.

The proof of the rest of this step and of Step 5 is pafa.llel to the corresponding
parts in the proof of Theorem 5.1.
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Uniqueness. Let the problem F have two solutions (u1, 1), (uz,¢2) and let v =
U1 — ug, ¥ = ¢ — 2. By virtue of Lemma 3.1 we have

=—{m (v'(t),0'(t)) + ma(¥'(t),¥'(8)) + ka (v(2), v(2)) + Kk2((2), % (¢))}
+ h(g(ui(t) + d) — §(ua(t) +d),v'(¢))
+ 6 (V' (2),7 (1) + 82(¥' (1), ¥ (1)
= (Pi(p1(t)) = Pu(e2(t)), ' () + (P2(1(8)) — Pa(e2(2)), ¥'(2))-
This yields the equality

(7.8)  mi(v'(),v'(t)) + ma (' (1), %' (2)) + ka (v(E), v(2) + Ka(b(2), (1))

t

- 2 /0 h(§(us(s) + d) — §(uz(s) + d), v'(s)) ds
- 2/0 8 (v'(s),v'(s)) ds — 2/0 62(¥'(s), ' (s)) ds
+2 /0 (Pi(01(5)) - Pi(pa(s)), v'(s)) ds

+2 /0 (Pa(1(5)) — Palpa(s)), 9/(s)) ds.

The conditions (MC), the structure of the bilinear form A(-,-) and the properties of
the function g imply the inequalities

(7.9) [(Pr(e1(t)) = Pr(e2(t),v' (1)) < CUI @I, + IV )W),
[(Pa(1(1)) — Pa(p2(t)), %' (0))] < CUIp @I, + ' @),
(h(§(ur(t) + d) = §(ua(t) + d),v' ()| < Clv@IF; + lv' @)l ),

where C is a positive constant. The rest of the proof is the same as for Theorem 5.1.
O

Definition 7.1. Let ug € Vi, oo € Vo, u3 € W, o, € W,d € V; and Fy, F»
belong to L?((0,T)) and let P, P, satisfy (MC). Then u € X, ¢ € X, are a solution
to the problem G if the equalities

my(u”,v) + k1(u,v) + 61(u',v) + h(g(u + d),v) = (F1 + Pi(p),v),
ma(0”,9) + k29, ¥) + 62(¢',¥) = (F2 + Pa(9), %)
hold in L?((0,T)) for any v € V;, 9 € V5. Moreover, the initial conditions
(7.10) u(0) =ug, u'(0)=uy,
¢(0) = po, ¥'(0) =
are fulfilled.

35



Theorem 7.2. If the assumptions of Definition 7.2 are fulfilled and the assump-

tions

(7.11) Ki(z) € C*((0,L)),  Ka(z) € C'({0,L)),
uo(z) € H*((0, L)) N Hy((0, L)),
d2u0(0) _ d21l,0(L)
dz?2 = da?
po(z) € H*((0,L)) N Hy((0, L))

=0,

hold, then there exists a solution to G and this solution is unique.

Proof. The proof is almost identical to the proof of Theorem 7.1 with only two

changes.
First. Let v;, ¥; be sequences of linearly independent elements of V;, V, and let
the linear spans of these sequences be dense in Vi, V; as well as in W.

For any m let
U (t) = Efim(t)'vi,
i=1
om(t) = Zgim(t)‘/)i
=1

be approximate solutions which satisfy the system of ordinary differential equa-
tions (7.1). The solution to this system satisfies the initial conditions

(7.12) v =u, %1 = o,
fim(0) =1, fim(0) =0,
glm(o) =1, gim(O) =0,

1=2,...,m,
m
U, = Z 120V, vy, v in Vi,
i=1
m
Pmy = Zgém(o)"/’i, ©m; = o in V3.
=1

Due to these conditions we can prove the estimates in Step 2 of the proof of Theo-

rem 7.1.
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Second. We have to established the estimates (5.14). If we consider the assump-
tions (7.11), then we have

(1.19) b0, 0) = (- (K o) 1)
ka2(wo,%:) = — (ad; (K2%(P0),'¢i)-

The equalities (7.13) together with the equations (7.1) and the initial condition (7.12)
yield the relations .
d? d?
(7.14) my (u;;(O),v,') = - (-(FL'E (K1 @uo) y v,—) - 61 ('Uml y vi)
- h(g(uo + d),'l)i) + (Fl + P1(300)7vi)a

d (K2%(PO),¢£) — 02(pm1,%i) + (F2 + Pa(p0), ¥i)-

ma(em(0),%0) = (-
Now (7.14) implies (5.14) and the estimates in Step & of the proof of Theorem 7.1.
The rest of the proof is parallel to the proof of Theorem 7.1. ]

Proposition 7.1. Let the assumptions of Theorem 7.1 be fulfilled, let (u,p)
be a solution to the problem F or G, and let the functions ©;, ©, describing the
damping vanish. Then the equalities

t2

(7.15) Ei(t2) — Ei(t1) = [ (F1 + Pu(e(s)),u/(s))ds,

Bt -~ Balt) = [ * (B + Pa(o(s)), ¢ (5)) ds

hold for any t;,t; € (0,T), where
By(8) = 5ma(u(8),/(9) + 5 u(e), u(t)) + sh(o(u(t) +d), g(u(t) + ),
Ex(t) = 5male! (0,4 () + 5kalo(t), (0

Proof. The proof is parallel to that of Proposition 5.1 and the equalities (7.15)
can be interpreted in the same way. O

Let us notice one interesting fact. In [9] the authors describe the collapse of the
Tacoma Narrows suspension bridge. The deck of this bridge was suspended by two
rows of cables. The essential moment of this collapse was a rapid change of large
vertical oscillations to torsional ones. The construction studied in this paper seems
to be protected against such quick changes. The formulae (7.15) show that the
internal energies of vertical and torsional oscillations remain separated in spite of
the loosening of cables.
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