Previous |  Up |  Next

Article

Title: An epidemic model with a time delay in transmission (English)
Author: Khan, Q. J. A.
Author: Krishnan, E. V.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 3
Year: 2003
Pages: 193-203
Summary lang: English
.
Category: math
.
Summary: We study a mathematical model which was originally suggested by Greenhalgh and Das and takes into account the delay in the recruitment of infected persons. The stability of the equilibria are also discussed. In addition, we show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise by Hopf bifurcation. (English)
Keyword: epidemic model
Keyword: time delay
Keyword: Hopf bifurcation
Keyword: equilibrium analysis
Keyword: differential equations
MSC: 34K13
MSC: 34K20
MSC: 92B05
MSC: 92D30
idZBL: Zbl 1099.92062
idMR: MR1980367
DOI: 10.1023/A:1026002429257
.
Date available: 2009-09-22T18:13:27Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134527
.
Reference: [1] R. M. Anderson, R. M. May: Vaccination against rubella and measles; quantitative investigations of different policies.J.  Hyg. 90 (1983), 259–325. 10.1017/S002217240002893X
Reference: [2] R. Bellman, K. L.  Cooke: Differential Difference Equations.Academic Press, New York, 1963. MR 0147745
Reference: [3] M. C. Boily, R. M.  Anderson: Sexual contact patterns between men and women and the spread of HIV-1 in urban societies in Africa.IMA J. Math. Appl. Med. Biol. 8 (1991), 221–247. 10.1093/imammb/8.4.221
Reference: [4] S. N. Busenburg, P. van den Driessche: Analysis of a disease transmission model in a population with varying size.J.  Math. Biol. 29 (1990), 257–270. MR 1047163
Reference: [5] S. N. Chow, J. K.  Hale: Methods of Bifurcation Theory.Springer-Verlag, New York, 1982. MR 0660633
Reference: [6] R. D. Driver: Ordinary and Delay Differential Equations.Applied Math. Sciences, Springer-Verlag, New York, 1977. Zbl 0374.34001, MR 0477368
Reference: [7] G. Gandolfo: Mathematical Methods and Models in Economic Dynamics.North Holland, London, 1971. Zbl 0227.90010
Reference: [8] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Population Dynamics.Academic Publisher, Dordrecht-Boston-London, 1992. Zbl 0752.34039, MR 1163190
Reference: [9] D. Greenhalgh, R.  Das: Modelling epidemics with variable contact rates.Theor. Popul. Biol. 47 (1995), 129–179. 10.1006/tpbi.1995.1006
Reference: [10] J. K. Hale, S. M. V.  Lunel: Introduction to Functional Differential Equations. Applied Math. Sciences  99.Springer-Verlag, New York, 1993. MR 1243878
Reference: [11] H. W. Hethcote,J. A.  Yorke: Gonorrhoea transmission dynamics and control.Lecture Notes in Biomathematics, Vol. 56, Springer-Verlag, New York, 1974. MR 0766910
Reference: [12] H. W. Hethcote, D. W. Tudor: Integral equation models for endemic infections diseases.J.  Math. Biol. 9 (1980), 37–47. MR 0648844, 10.1007/BF00276034
Reference: [13] H. W. Hethcote, H. W. Stech, and P. van den Driessche: Nonlinear oscillations in epidemic models.SIAM J.  Appl. Math. 40 (1981), 1–9. MR 0602496, 10.1137/0140001
Reference: [14] H. W. Hethcote, H. W. Stech, and P. van den Driessche: Stability analysis for models of diseases without immunity.J.  Math. Biol. 13 (1981), 185–198. MR 0661676, 10.1007/BF00275213
Reference: [15] H. W. Hethcote, M.  Lewis, and P. van den Driessche: An epidemiological model with a delay and a non-linear incidence rate.J.  Math. Biol. 27 (1989), 49–64. MR 0984225, 10.1007/BF00276080
Reference: [16] J. A. Jacquez, C. P. Simon, J.  Koopman, L. Sattenspiel, and T. Perry: Modelling and analyzing HIV transmissions: The effect of contact patterns.Math. Biosci. 92 (1988), 119–199. MR 0975856, 10.1016/0025-5564(88)90031-4
Reference: [17] M. Kalecki: A macrodynamic theory of business cycles.Econometrica 3 (1935), 327–344. 10.2307/1905325
Reference: [18] W. W. Leontief: Lags and stability of dynamic systems.Econometrica 29 (1961), 659–669. MR 0145984, 10.2307/1911811
Reference: [19] N. MacDonald: Time Lags in Biological Models. Lecture Notes in Biomathematics Vol. 28.Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 0521439
Reference: [20] R. M. May, R. M.  Anderson, and A. R. McLean: Possible demographic consequences of HIV/AIDS epidemics I.  Assuming HIV infection always lead to AIDS.Math. Biosci. 90 (1988), 475–505. MR 0958153, 10.1016/0025-5564(88)90079-X
Reference: [21] J. E. Marsden, M.  McCracken: The Hopf Bifurcation and Its Applications.Springer-Verlag, New York, 1976. MR 0494309
Reference: [22] A. Nold: Heterogeneity in disease transmission modelling.Math. Biosci. 52 (1980), 227–240. MR 0596176, 10.1016/0025-5564(80)90069-3
Reference: [23] H. R. Thieme: Global asymptotic stability for epidemic models. Equadiff 82.In: Lecture Notes in Mathematics Vol.  1017, H.  W.  Knobloch, K.  Schmitt (eds.), Springer-Verlag, Berlin, 1983, pp. 608–615. MR 0726617
Reference: [24] H. R. Thieme: Local stability in epidemic models for heterogeneous populations.In: Mathematics in Biology and Medicine. Lecture Notes in Biomathematics Vol. 57, V. Capasso, E.  Grosso and S.  L.  Paveri-Fontana (eds.), Springer-Verlag, Berlin, 1985, pp. 185–189. Zbl 0584.92020, MR 0812889
.

Files

Files Size Format View
AplMat_48-2003-3_3.pdf 304.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo