[1] R. M. Anderson, R. M. May:
Vaccination against rubella and measles; quantitative investigations of different policies. J. Hyg. 90 (1983), 259–325.
DOI 10.1017/S002217240002893X
[2] R. Bellman, K. L. Cooke:
Differential Difference Equations. Academic Press, New York, 1963.
MR 0147745
[3] M. C. Boily, R. M. Anderson:
Sexual contact patterns between men and women and the spread of HIV-1 in urban societies in Africa. IMA J. Math. Appl. Med. Biol. 8 (1991), 221–247.
DOI 10.1093/imammb/8.4.221
[4] S. N. Busenburg, P. van den Driessche:
Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 29 (1990), 257–270.
MR 1047163
[5] S. N. Chow, J. K. Hale:
Methods of Bifurcation Theory. Springer-Verlag, New York, 1982.
MR 0660633
[6] R. D. Driver:
Ordinary and Delay Differential Equations. Applied Math. Sciences, Springer-Verlag, New York, 1977.
MR 0477368 |
Zbl 0374.34001
[7] G. Gandolfo:
Mathematical Methods and Models in Economic Dynamics. North Holland, London, 1971.
Zbl 0227.90010
[8] K. Gopalsamy:
Stability and Oscillations in Delay Differential Equations of Population Dynamics. Academic Publisher, Dordrecht-Boston-London, 1992.
MR 1163190 |
Zbl 0752.34039
[9] D. Greenhalgh, R. Das:
Modelling epidemics with variable contact rates. Theor. Popul. Biol. 47 (1995), 129–179.
DOI 10.1006/tpbi.1995.1006
[10] J. K. Hale, S. M. V. Lunel:
Introduction to Functional Differential Equations. Applied Math. Sciences 99. Springer-Verlag, New York, 1993.
MR 1243878
[11] H. W. Hethcote,J. A. Yorke:
Gonorrhoea transmission dynamics and control. Lecture Notes in Biomathematics, Vol. 56, Springer-Verlag, New York, 1974.
MR 0766910
[13] H. W. Hethcote, H. W. Stech, and P. van den Driessche:
Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 40 (1981), 1–9.
DOI 10.1137/0140001 |
MR 0602496
[14] H. W. Hethcote, H. W. Stech, and P. van den Driessche:
Stability analysis for models of diseases without immunity. J. Math. Biol. 13 (1981), 185–198.
DOI 10.1007/BF00275213 |
MR 0661676
[15] H. W. Hethcote, M. Lewis, and P. van den Driessche:
An epidemiological model with a delay and a non-linear incidence rate. J. Math. Biol. 27 (1989), 49–64.
DOI 10.1007/BF00276080 |
MR 0984225
[16] J. A. Jacquez, C. P. Simon, J. Koopman, L. Sattenspiel, and T. Perry:
Modelling and analyzing HIV transmissions: The effect of contact patterns. Math. Biosci. 92 (1988), 119–199.
DOI 10.1016/0025-5564(88)90031-4 |
MR 0975856
[17] M. Kalecki:
A macrodynamic theory of business cycles. Econometrica 3 (1935), 327–344.
DOI 10.2307/1905325
[19] N. MacDonald:
Time Lags in Biological Models. Lecture Notes in Biomathematics Vol. 28. Springer-Verlag, Berlin-Heidelberg-New York, 1979.
MR 0521439
[20] R. M. May, R. M. Anderson, and A. R. McLean:
Possible demographic consequences of HIV/AIDS epidemics I. Assuming HIV infection always lead to AIDS. Math. Biosci. 90 (1988), 475–505.
DOI 10.1016/0025-5564(88)90079-X |
MR 0958153
[21] J. E. Marsden, M. McCracken:
The Hopf Bifurcation and Its Applications. Springer-Verlag, New York, 1976.
MR 0494309
[23] H. R. Thieme:
Global asymptotic stability for epidemic models. Equadiff 82. In: Lecture Notes in Mathematics Vol. 1017, H. W. Knobloch, K. Schmitt (eds.), Springer-Verlag, Berlin, 1983, pp. 608–615.
MR 0726617
[24] H. R. Thieme:
Local stability in epidemic models for heterogeneous populations. In: Mathematics in Biology and Medicine. Lecture Notes in Biomathematics Vol. 57, V. Capasso, E. Grosso and S. L. Paveri-Fontana (eds.), Springer-Verlag, Berlin, 1985, pp. 185–189.
MR 0812889 |
Zbl 0584.92020