[1] A. Adjerid, J. E. Flaherty and Y. J. Wang:
A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems. Numer. Math. 65 (1993), 1–21.
DOI 10.1007/BF01385737 |
MR 1217436
[4] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[5] S. Fučík, A. Kufner:
Nonlinear Differential Equations. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980.
MR 0558764
[6] H. Gajevski, K. Gröger and K. Zacharias:
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974.
MR 0636412
[7] I. Hlaváček, M. Křížek and J. Malý:
On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189.
DOI 10.1006/jmaa.1994.1192 |
MR 1275952
[8] S. Larsson, V. Thomée and N. Y. Zhang:
Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci. 11 (1989), 105–124.
DOI 10.1002/mma.1670110108 |
MR 0973559
[9] P. K. Moore:
A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31 (1994), 149–169.
DOI 10.1137/0731008 |
MR 1259970 |
Zbl 0798.65089
[10] P. K. Moore, J. E. Flaherty: High-order adaptive solution of parabolic equations I. Singly implicit Runge-Kutta methods and error estimation. Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991.
[11] P. K. Moore, J. E. Flaherty:
High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations. BIT 33 (1993), 309–331.
DOI 10.1007/BF01989753 |
MR 1326022
[12] T. Roubíček: Nonlinear differential equations and inequalities. Mathematical Institute of Charles University, Prague, in preparation.
[14] B. Szabó, I. Babuška:
Finite Element Analysis. John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
MR 1164869
[15] V. Thomée:
Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, 1997.
MR 1479170