Previous |  Up |  Next

Article

Keywords:
linear parabolic equation; third boundary condition; finite element method; semidiscretization; fully discretized scheme; elliptic projection
Summary:
We solve a linear parabolic equation in $\mathbb{R}^d$, $d \ge 1,$ with the third nonhomogeneous boundary condition using the finite element method for discretization in space, and the $\theta $-method for discretization in time. The convergence of both, the semidiscrete approximations and the fully discretized ones, is analysed. The proofs are based on a generalization of the idea of the elliptic projection. The rate of convergence is derived also for variable time step-sizes.
References:
[1] G. Akrivis, V.  Dougalis: On a conservative, high-order accurate finite element scheme for the “parabolic” equation. Comput. Acoustics 1 (1989), 17–26. MR 1095058
[2] R. Bellman: Introduction to Matrix Analysis. SIAM, Philadelphia, 1997. MR 1455129 | Zbl 0872.15003
[3] S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, Inc. A, 1994. MR 1278258
[4] J. Douglas, T.  Dupont: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7 (1970), 575–626. DOI 10.1137/0707048 | MR 0277126
[5] J. Douglas, T.  Dupont: The numerical solution of waterflooding problems in petroleum engineering by variational methods. Studies in Numerical Analysis  2, SIAM, Philadelphia, 1970. MR 0269141
[6] J. Douglas, T. Dupont, H. H.  Rachford: The application of variational methods to waterflooding problems. J. Canad. Petroleum Tech. 8 (1969), 79–85.
[7] J. Douglas, T. Dupont, M. F.  Wheeler: A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations. Math. Comp. 32 (1978), 345–362. DOI 10.1090/S0025-5718-1978-0495012-2 | MR 0495012
[8] I. Faragó, S.  Korotov, P.  Neittaanmäki: Finite element analysis for the heat conduction equation with the third boundary condition. Annales Univ. Sci. Budapest 41 (1998), 183–195. MR 1691927
[9] G. Fix, N.  Nassif: On finite element approximation in time dependent problems. Numer. Math. 19 (1972), 127–135. DOI 10.1007/BF01402523 | MR 0311122
[10] M. Křížek, P.  Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer Academic Publishers, 1996. MR 1431889
[11] M. Křížek, V.  Preiningerová: Calculation of the 3D  temperature field of synchronous and of induction machines by the finite element method. Elektrotechn. obzor 80 (1991), 78–84. (Czech)
[12] D. P. Laurie: Optimal parameter choice in the $\theta $-method for parabolic equations. J.  Inst. Math. Appl. 19 (1977), 119–125. DOI 10.1093/imamat/19.1.119 | MR 0440926 | Zbl 0346.65040
[13] H. S. Price, J. C. Cavendich, R. S.  Varga: Numerical methods of higher-order accuracy for diffusion-convection equations. Soc. Petroleum Engrg.  J. 8 (1968), 293–303. DOI 10.2118/1877-PA
[14] H. S. Price, R. S. Varga: Error bounds for semi-discrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics. Numerical Solution of Field Problems in Continuum Physics, AMS, Providence, 1970, pp. 74–94. MR 0266452
[15] A. A. Samarskii: Theory of Difference Schemes. Nauka, Moscow, 1977. (Russian) MR 0483271 | Zbl 0368.65031
[16] J. A. Scott, W. L.  Seward: Finite difference method for parabolic problems with nonsmooth initial data. Report of Oxford Univ. Comp. Lab. 86/22 (1987).
[17] G. Strang, G.  Fix: An Analysis of the Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973. MR 0443377
[18] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, 1997. MR 1479170
[19] R. S. Varga: Functional Analysis and Approximation Theory in Numerical Analysis. SIAM, Philadelphia, 1971. MR 0310504 | Zbl 0226.65064
[20] M. F. Wheeler: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J.  Numer. Anal. 10 (1973), 723–759. DOI 10.1137/0710062 | MR 0351124
Partner of
EuDML logo