[1] G. Akrivis, V. Dougalis:
On a conservative, high-order accurate finite element scheme for the “parabolic” equation. Comput. Acoustics 1 (1989), 17–26.
MR 1095058
[3] S. C. Brenner, L. R. Scott:
The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, Inc. A, 1994.
MR 1278258
[5] J. Douglas, T. Dupont:
The numerical solution of waterflooding problems in petroleum engineering by variational methods. Studies in Numerical Analysis 2, SIAM, Philadelphia, 1970.
MR 0269141
[6] J. Douglas, T. Dupont, H. H. Rachford: The application of variational methods to waterflooding problems. J. Canad. Petroleum Tech. 8 (1969), 79–85.
[8] I. Faragó, S. Korotov, P. Neittaanmäki:
Finite element analysis for the heat conduction equation with the third boundary condition. Annales Univ. Sci. Budapest 41 (1998), 183–195.
MR 1691927
[10] M. Křížek, P. Neittaanmäki:
Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer Academic Publishers, 1996.
MR 1431889
[11] M. Křížek, V. Preiningerová: Calculation of the 3D temperature field of synchronous and of induction machines by the finite element method. Elektrotechn. obzor 80 (1991), 78–84. (Czech)
[13] H. S. Price, J. C. Cavendich, R. S. Varga:
Numerical methods of higher-order accuracy for diffusion-convection equations. Soc. Petroleum Engrg. J. 8 (1968), 293–303.
DOI 10.2118/1877-PA
[14] H. S. Price, R. S. Varga:
Error bounds for semi-discrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics. Numerical Solution of Field Problems in Continuum Physics, AMS, Providence, 1970, pp. 74–94.
MR 0266452
[16] J. A. Scott, W. L. Seward: Finite difference method for parabolic problems with nonsmooth initial data. Report of Oxford Univ. Comp. Lab. 86/22 (1987).
[17] G. Strang, G. Fix:
An Analysis of the Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.
MR 0443377
[18] V. Thomée:
Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, 1997.
MR 1479170
[19] R. S. Varga:
Functional Analysis and Approximation Theory in Numerical Analysis. SIAM, Philadelphia, 1971.
MR 0310504 |
Zbl 0226.65064
[20] M. F. Wheeler:
A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723–759.
DOI 10.1137/0710062 |
MR 0351124