[1] P. J. Siemens:
Liquid-gas phase transition in nuclear matter. Nature 305 (1983), 410–412.
DOI 10.1038/305410a0
[2] P. Bonche, S. Koonin and J. W. Negele:
One-dimensional nuclear dynamics in the TDHF approximation. Phys. Rev. C 13 (1976), 1226–1258.
DOI 10.1103/PhysRevC.13.1226
[3] D. K. Campbell: Nuclear Physics in one dimension. In: Nuclear Physics with Heavy Ions and Mesons, R. Balian et al. (eds.), North Holland, 1980.
[4] C. Y. Wong, J. A. Maruhn and T. A. Welton: Dynamics of nuclear fluids. I. Foundations. Nucl. Phys. A253 (1975), 469–489.
[5] B. Ducomet:
Simplified models of quantum fluids in nuclear physics. Math. Bohem. 126 (2001), 323–336.
MR 1844272 |
Zbl 1050.76063
[7] B. Ducomet:
Asymptotic behaviour for a nuclear fluid in one dimension. Math. Methods Appl. Sci. 24 (2001), 543–559.
DOI 10.1002/mma.227 |
MR 1835486
[8] P. Ring, P. Schuck:
The Nuclear Many-Body Problem. Springer-Verlag, 1980.
MR 0611683
[9] S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov:
Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and Its Applications Vol. 22. North Holland, Amsterdam, 1990.
MR 1035212
[12] S. Jiang:
On the asymptotic behaviour of the motion of a viscous heat-conducting, one-dimensional real gas. Math. Z. 216 (1994), 317–336.
DOI 10.1007/BF02572324 |
MR 1278427
[14] C. Dafermos, L. Hsiao:
Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. Theory Methods Appl. 6 (1982), 435–454.
DOI 10.1016/0362-546X(82)90058-X |
MR 0661710
[16] L. Hsiao, T. Luo:
Large time behaviour of solutions to the equations of one-dimensional nonlinear thermoviscoelasticity. Quart. Appl. Math. 61 (1998), 201–219.
MR 1622554
[17] W. Shen, S. Zheng and P. Zhu:
Global existence and asymptotic behaviour of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions. Quart. Appl. Math. 57 (1999), 93–116.
DOI 10.1090/qam/1672183 |
MR 1672183
[18] T. Nagasawa:
On the outer pressure problem of the one-dimensional polytropic ideal gas. Japan J. Appl. Math. 5 (1988), 53–85.
MR 0924744 |
Zbl 0665.76076