Previous |  Up |  Next

Article

Keywords:
Navier-Stokes equations; compressible fluid
Summary:
We consider a simplified one-dimensional thermal model of nuclear matter, described by a system of Navier-Stokes-Poisson type, with a non monotone equation of state due to an effective nuclear interaction. We prove the existence of globally defined (large) solutions of the corresponding free boundary problem, with an exterior pressure $P$ which is not required to be positive, provided sufficient thermal dissipation is present. We give also a partial description of the asymptotic behaviour of the system, in the two cases $P>0$ and $P<0$.
References:
[1] P. J. Siemens: Liquid-gas phase transition in nuclear matter. Nature 305 (1983), 410–412. DOI 10.1038/305410a0
[2] P. Bonche, S. Koonin and J. W. Negele: One-dimensional nuclear dynamics in the TDHF  approximation. Phys. Rev.  C 13 (1976), 1226–1258. DOI 10.1103/PhysRevC.13.1226
[3] D. K. Campbell: Nuclear Physics in one dimension. In: Nuclear Physics with Heavy Ions and Mesons, R. Balian et al. (eds.), North Holland, 1980.
[4] C. Y. Wong, J. A. Maruhn and T. A. Welton: Dynamics of nuclear fluids. I. Foundations. Nucl. Phys. A253 (1975), 469–489.
[5] B.  Ducomet: Simplified models of quantum fluids in nuclear physics. Math. Bohem. 126 (2001), 323–336. MR 1844272 | Zbl 1050.76063
[6] B. Ducomet: Global existence for a simplified model of nuclear fluid in one dimension. J. Math. Fluid Mech. 2 (2000), 1–15. DOI 10.1007/s000210050017 | MR 1755864 | Zbl 0974.76013
[7] B. Ducomet: Asymptotic behaviour for a nuclear fluid in one dimension. Math. Methods Appl. Sci. 24 (2001), 543–559. DOI 10.1002/mma.227 | MR 1835486
[8] P. Ring, P. Schuck: The Nuclear Many-Body Problem. Springer-Verlag, 1980. MR 0611683
[9] S. N. Antontsev, A. V. Kazhikhov and V. N.  Monakhov: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and Its Applications Vol.  22. North Holland, Amsterdam, 1990. MR 1035212
[10] B. Kawohl: Global existence of large solutions to initial boundary value problems for a viscous heat-conducting one-dimensional real gas. J. Differential Equations 58 (1985), 76–103. DOI 10.1016/0022-0396(85)90023-3 | MR 0791841 | Zbl 0579.35052
[11] S. Jiang: On initial boundary value problems for a viscous heat-conducting one-dimensional real gas. J. Differential Equations 110 (1994), 157–181. DOI 10.1006/jdeq.1994.1064 | MR 1278368 | Zbl 0805.35074
[12] S. Jiang: On the asymptotic behaviour of the motion of a viscous heat-conducting, one-dimensional real gas. Math. Z. 216 (1994), 317–336. DOI 10.1007/BF02572324 | MR 1278427
[13] B. Ducomet: On the stability of a stellar structure in one dimension  II: The reactive case. RAIRO Modél. Math. Anal. Numér. 31 (1997), 381–407. DOI 10.1051/m2an/1997310303811 | MR 1451348 | Zbl 0882.76025
[14] C. Dafermos, L. Hsiao: Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. Theory Methods Appl. 6 (1982), 435–454. DOI 10.1016/0362-546X(82)90058-X | MR 0661710
[15] S. Jiang: Global large solutions to initial boundary value problems in one-dimensional nonlinear thermoviscoelasticity. Quart. Appl. Math. 51 (1993), 731–744. DOI 10.1090/qam/1247437 | MR 1247437 | Zbl 0809.35135
[16] L. Hsiao, T. Luo: Large time behaviour of solutions to the equations of one-dimensional nonlinear thermoviscoelasticity. Quart. Appl. Math. 61 (1998), 201–219. MR 1622554
[17] W. Shen, S. Zheng and P. Zhu: Global existence and asymptotic behaviour of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions. Quart. Appl. Math. 57 (1999), 93–116. DOI 10.1090/qam/1672183 | MR 1672183
[18] T. Nagasawa: On the outer pressure problem of the one-dimensional polytropic ideal gas. Japan J. Appl. Math. 5 (1988), 53–85. MR 0924744 | Zbl 0665.76076
[19] G. Andrews, J. M. Ball: Asymptotic behaviour and changes of phase in one-dimensional non linear viscoelasticity. J. Differential Equations 44 (1982), 306–341. DOI 10.1016/0022-0396(82)90019-5 | MR 0657784
Partner of
EuDML logo