[1] J. H. Ahlberg, E. N. Nilson and J. L. Walsh:
The Theory of Splines and Their Applications. Academic Press, London, 1967.
MR 0239327
[2] I. Babuška, M. Práger and E. Vitásek:
Numerical Processes in Differential Equations. John Wiley & Sons, London, 1966.
MR 0223101
[4] G. H. Behforooz, N. Papamichael:
Improved orders of approximation derived from interpolatory cubic splines. BIT 19 (1979), 19–26.
DOI 10.1007/BF01931217 |
MR 0530111
[6] J. Brandts: Superconvergence phenomena in finite element methods. PhD thesis, Utrecht Univ. (1995).
[8] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford, 1978.
MR 0520174 |
Zbl 0383.65058
[9] G. Heindl:
Interpolation and approximation by piecewise quadratic $C^1$-functions of two variables. In: Multivariate Approximation Theory (W. Schempp and K. Zeller, eds.), ISNM vol. 51, Birkhäuser, Basel, 1979, pp. 146–161.
MR 0560670
[10] I. Hlaváček, J. Nečas:
On inequalities of Korn’s type. Arch. Rational Mech. Anal. 36 (1970), 305–334.
DOI 10.1007/BF00249518
[11] V. Hoppe:
Finite elements with harmonic interpolation functions. In: Proc. Conf. MAFELAP (J. R. Whiteman, ed.), Academic Press, London, 1973, pp. 131–142.
Zbl 0278.73051
[12] D. Huang, D. Wu: The superconvergence of the spline finite element solution and its second order derivative for the two-point boundary problem of a fourth order differential equation. J. Zhejiang Univ. 3 (1982), 92–99.
[13] M. Křížek, L. Liu, P. Neittaanmäki:
On harmonic and biharmonic finite elements. In: Finite Element Methods III: Three-dimensional problems, Vol. 15, M. Křížek, P. Neittaanmäki (eds.), GAKUTO Internat. Ser. Math. Sci. Appl., Tokyo, 2001, pp. 146–154.
MR 1896273
[14] M. Křížek, P. Neittaanmäki:
On time-harmonic Maxwell equations with nonhomogeneous conductivities: solvability and FE-approximation. Apl. Mat. 34 (1989), 480–499.
MR 1026513
[15] M. Křížek, P. Neittaanmäki:
Finite Element Approximation of Variational Problems and Applications. Longman, Harlow, 1990.
MR 1066462
[16] J. E. Lagnese, J.-L. Lions: Modelling Analysis and Control of Thin Plates. Masson, Paris and Springer-Verlag, Berlin, 1989.
[17] Q. Lin:
Full convergence order for hyperbolic finite elements. In: Proc. Conf. Discrete Galerkin Methods (B. Cockburn, ed.), Newport 1999, pp. 167–177.
MR 1842172
[18] J. Nečas, I. Hlaváček:
Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, Oxford, New York, 1981.
MR 0600655
[19] K. Rektorys:
Variational Methods in Mathematics, Science and Engineering, chap. 23. Riedel, Dodrecht, 1980.
MR 0596582
[20] G. Strang, G. Fix:
An Analysis of the Finite Element Method. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1973.
MR 0443377
[21] P. Tong:
Exact solutions of certain problems by finite-element method. AIAA J. 7 (1969), 178–180.
DOI 10.2514/3.5067
[22] C. Wielgosz:
Exact results given by finite element methods in mechanics. J. Méch. Théor. Appl. 1 (1982), 323–329.
MR 0700053 |
Zbl 0503.73046