[1] R. B. Davies: The distribution of a linear combination of chi-square random variables. J. Roy. Statist. Soc. Ser. C 29 (1980), 323–333.
[2] S. Gnot, M. Jankowiak-Rosłanowska and A. Michalski: Testing for hypothesis in mixed linear models with two variance components. Listy Biometryczne—Biometrical Letters 29 (1992), 13–31.
[5] A. I. Khuri, T. Mathew and B. K. Sinha:
Statistical Tests for Mixed Linear Models. J. Wiley, New York, 1998.
MR 1601351
[6] J. Kleffe, B. Seifert:
On the role of MINQUE in testing of hypotheses under mixed linear models. Comm. Statist. Theory Methods 17 (1988), 1287–1309.
DOI 10.1080/03610928808829680 |
MR 0942977
[7] L. R. LaMotte, A. McWhorter and R. A. Prasad:
Confidence intervals and tests on the ratio in random models with two variance components. Comm. Statist. Theory Methods 17 (1988), 1135–1164.
DOI 10.1080/03610928808829675 |
MR 0942972
[9] T. Mathew:
Optimum invariant tests in mixed linear models with two variance components. In: Statistical Data Analysis and Inference (Y. Dodge, ed.), North-Holland, Amsterdam, 1989, pp. 381–388.
MR 1089650 |
Zbl 0735.62068
[14] C. R. Rao, J. Kleffe:
Estimation of Variance Components and Applications. North-Holland Publishing Company, Amsterdam, 1988.
MR 0933559
[15] J. F. Seely, Y. El-Bassiouni:
Applying Wald’s variance component test. Ann. Statist. 11 (1983), 197–201.
MR 0684876
[21] V. Witkovský: Optimality of the ANOVA-like test in model with two variance components. In: MEASUREMENT 99. Proceedings of the International Conference on Measurement, Smolenice, Slovak Republic, 26–29 April 1999, I. Frollo, A. Plačková (eds.), 1999, pp. 28–31.