Article
Keywords:
numerical interpolation; optimal interpolatory rule with prescribed nodes; optimal interpolatory rule with free nodes; remainder estimation
Summary:
The aim of the paper is to get an estimation of the error of the general interpolation rule for functions which are real valued on the interval $[-a,a]$, $a\in (0,1)$, have a holomorphic extension on the unit circle and are quadratic integrable on the boundary of it. The obtained estimate does not depend on the derivatives of the function to be interpolated. The optimal interpolation formula with mutually different nodes is constructed and an error estimate as well as the rate of convergence are obtained. The general extremal problem with free weights and knots is solved.
References:
[1] K. Yosida:
Functional Analysis. Springer-Verlag, Berlin, 1965.
Zbl 0126.11504
[2] N. I. Achiezer: Lectures on the Theory of Approximation. Nauka, Moscow, 1965. (Russian)
[4] A. Paulik:
Zur Existenz optimaler Quadraturformeln mit freien Knoten bei Integration analytischer Funktionen. Numer. Math. 27 (1977), 395–405.
MR 0436555 |
Zbl 0363.65020
[5] G. Meinardus:
Approximation von Funktionen und ihre numerische Behandlung. Springer-Verlag, Berlin, 1964.
MR 0176272 |
Zbl 0124.33103
[9] J. Kofroň:
Die ableitungsfreien Fehlerabschätzungen von Interpolationsformeln. Apl. Mat. 17 (1972), 137–152.
MR 0295527
[10] W. Rudin:
Real and Complex Analysis. Mc Graw-Hill, New York, 1966, 1974.
MR 0344043