Previous |  Up |  Next

Article

Keywords:
homogenization theory; Stokes flow; porous media; numerical experiments
Summary:
We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.
References:
[1] Allaire, G.: Homogenization of the Stokes flow in connected porous medium. Asymptotic Analysis 3 (1989), 203–222. DOI 10.3233/ASY-1989-2302 | MR 1020348
[2] Allaire, G.: Homogenization of the unsteady Stokes equation in porous media. In: Progress in Partial Differetial Equations: Calculus of variation, applications, Pitman Research notes in mathematics Series 267, New York, Longman Higher Education, 1992.
[3] Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity modell of single phase flow via homogenization theory. SIAM J. Math. Anal. 21 (1990), 823–836. DOI 10.1137/0521046 | MR 1052874
[4] Bakhvalov, N., Panasenko, G.: Homogenization: Average Processes in Periodic Media. Dordrecht, Kluwer Academic Publishers, 1989. MR 1112788
[5] Beliaev, A., Kozlov, S: Darcy equation for random porous media. Comm. Pure and Appl. Math. XLIX (1996), 1–34. DOI 10.1002/(SICI)1097-0312(199601)49:1<1::AID-CPA1>3.0.CO;2-J | MR 1369834
[6] Bourgear, A., Carasso, C., Luckhaus, S., Mikelic, A.: Mathematical Modelling of Flow Through Porous Media. London: World Scientific, 1996.
[7] Bourgeat, A., Mikelic, A.: Homogenization of a polymer flow through a porous medium. Nonlinear Anal., Theory Methods Appl. 26 (1996), 1221–1253. DOI 10.1016/0362-546X(94)00285-P | MR 1376100
[8] Donato, P., Saint Jean Paulin, J.: Stokes flow in a porous medium with a double periodicity. Progress in Partial Differetial Equations: the Metz Surveys, Pitman, Longman Press, 1994, pp. 116–129. MR 1316195
[9] Ene, I., Saint Jean Paulin, J.: On a model of fractured porous media. In:, 1996.
[10] Ene, H., Poliševski, D.: Thermal Flow in Porous Media. Dordrecht, D. Reidel Publishing Company, 1987.
[11] Holmbom, A.: Some Modes of Convergence and their Application to Homogenization and Optimal Composites Design. Doctoral Thesis, Luleå University of Technology, Sweden, 1996.
[12] Lipton, R., Avellaneda. M.: A Darcy’s law for slow viscous flow through a stationary array of bubbles. Proc. Roy. Soc. Edinburgh 114A (1990,), 71–79. MR 1051608
[13] Lukkassen, D.: Some sharp estimates connected to the homogenized $p$-Laplacian equation. ZAMM—Z. angew. Math. Mech. 76 (1996), no. S2, 603–604. Zbl 1126.35303
[14] Lukkassen, D.: Upper and lower bounds for averaging coefficients. Russian Math. Surveys 49 (1994), no. 4, 114–115.
[15] Lukkassen, D.: On estimates of the effective energy for the Poisson equation with a $p$-Laplacian. Russian Math. Surveys 51 (1996), no. 4, 739–740. DOI 10.1070/RM1996v051n04ABEH002981 | MR 1422238
[16] Lukkassen, D.: Formulae and Bounds Connected to Homogenization and Optimal Design of Partial Differential Operators and Integral Functionals. Ph.D. thesis (ISBN: 82-90487-87-8), University of Tromsø, 1996.
[17] Lukkassen, D., Persson, L.E., Wall, P.: On some sharp bounds for the homogenized $p$-Poisson equation (communicated by O.A. Oleinik). Applicable Anal. 58 (1995), 123–135. DOI 10.1080/00036819508840366 | MR 1384593
[18] Lukkassen, D., Persson, L.E., Wall, P.: Some engineering and mathematical aspects on the homogenization method. Composites Engineering 5 (1995), no. 5, 519–531. DOI 10.1016/0961-9526(95)00025-I
[19] Meidell, A., Wall, P.: Homogenization and design of structures with optimal macroscopic behaviour. In: Proceedings of the 5’th International Conference on Computer Aided Optimum Design of Structures. To appear, 1997.
[20] Mikelic, A.: Homogenization of the nonstationary Navier-Stoke equation in a domain with a grained boundary. Annali Mat. Pura. Appl. 158 (1991), 167–179. DOI 10.1007/BF01759303 | MR 1131849
[21] Milton, G. W.: On characterizing the set of possible effective tensors of composites: The Variational Method and the Translation Method. Comm. on Pure and Appl. Math. XLIII (1990), 63–125. MR 1024190 | Zbl 0751.73041
[22] Nandakumaran, A. K.: Steady and evolution Stokes Equation in porous media with non-homogeneous boundary data; a homogenization progress. Differential and Integral equations 5 (1992), 73–93. MR 1141728
[23] Persson, L. E., Persson, L., Svanstedt, N., Wyller, J.: The Homogenization Method: An Introduction. Lund, Studentlitteratur, 1993. MR 1250833
[24] Sanches-Palencia, E.: Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. New York, Springer Verlag, 1980.
[25] Tartar, L.: Incompressible fluid flow through porous media—Convergence of the homogenization process. In: Appendix of, 1980.
Partner of
EuDML logo