[2] Allaire, G.: Homogenization of the unsteady Stokes equation in porous media. In: Progress in Partial Differetial Equations: Calculus of variation, applications, Pitman Research notes in mathematics Series 267, New York, Longman Higher Education, 1992.
[3] Arbogast, T., Douglas, J., Hornung, U.:
Derivation of the double porosity modell of single phase flow via homogenization theory. SIAM J. Math. Anal. 21 (1990), 823–836.
DOI 10.1137/0521046 |
MR 1052874
[4] Bakhvalov, N., Panasenko, G.:
Homogenization: Average Processes in Periodic Media. Dordrecht, Kluwer Academic Publishers, 1989.
MR 1112788
[6] Bourgear, A., Carasso, C., Luckhaus, S., Mikelic, A.: Mathematical Modelling of Flow Through Porous Media. London: World Scientific, 1996.
[8] Donato, P., Saint Jean Paulin, J.:
Stokes flow in a porous medium with a double periodicity. Progress in Partial Differetial Equations: the Metz Surveys, Pitman, Longman Press, 1994, pp. 116–129.
MR 1316195
[9] Ene, I., Saint Jean Paulin, J.: On a model of fractured porous media. In:, 1996.
[10] Ene, H., Poliševski, D.: Thermal Flow in Porous Media. Dordrecht, D. Reidel Publishing Company, 1987.
[11] Holmbom, A.: Some Modes of Convergence and their Application to Homogenization and Optimal Composites Design. Doctoral Thesis, Luleå University of Technology, Sweden, 1996.
[12] Lipton, R., Avellaneda. M.:
A Darcy’s law for slow viscous flow through a stationary array of bubbles. Proc. Roy. Soc. Edinburgh 114A (1990,), 71–79.
MR 1051608
[13] Lukkassen, D.:
Some sharp estimates connected to the homogenized $p$-Laplacian equation. ZAMM—Z. angew. Math. Mech. 76 (1996), no. S2, 603–604.
Zbl 1126.35303
[14] Lukkassen, D.: Upper and lower bounds for averaging coefficients. Russian Math. Surveys 49 (1994), no. 4, 114–115.
[16] Lukkassen, D.: Formulae and Bounds Connected to Homogenization and Optimal Design of Partial Differential Operators and Integral Functionals. Ph.D. thesis (ISBN: 82-90487-87-8), University of Tromsø, 1996.
[17] Lukkassen, D., Persson, L.E., Wall, P.:
On some sharp bounds for the homogenized $p$-Poisson equation (communicated by O.A. Oleinik). Applicable Anal. 58 (1995), 123–135.
DOI 10.1080/00036819508840366 |
MR 1384593
[18] Lukkassen, D., Persson, L.E., Wall, P.:
Some engineering and mathematical aspects on the homogenization method. Composites Engineering 5 (1995), no. 5, 519–531.
DOI 10.1016/0961-9526(95)00025-I
[19] Meidell, A., Wall, P.: Homogenization and design of structures with optimal macroscopic behaviour. In: Proceedings of the 5’th International Conference on Computer Aided Optimum Design of Structures. To appear, 1997.
[20] Mikelic, A.:
Homogenization of the nonstationary Navier-Stoke equation in a domain with a grained boundary. Annali Mat. Pura. Appl. 158 (1991), 167–179.
DOI 10.1007/BF01759303 |
MR 1131849
[21] Milton, G. W.:
On characterizing the set of possible effective tensors of composites: The Variational Method and the Translation Method. Comm. on Pure and Appl. Math. XLIII (1990), 63–125.
MR 1024190 |
Zbl 0751.73041
[22] Nandakumaran, A. K.:
Steady and evolution Stokes Equation in porous media with non-homogeneous boundary data; a homogenization progress. Differential and Integral equations 5 (1992), 73–93.
MR 1141728
[23] Persson, L. E., Persson, L., Svanstedt, N., Wyller, J.:
The Homogenization Method: An Introduction. Lund, Studentlitteratur, 1993.
MR 1250833
[24] Sanches-Palencia, E.: Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. New York, Springer Verlag, 1980.
[25] Tartar, L.: Incompressible fluid flow through porous media—Convergence of the homogenization process. In: Appendix of, 1980.