Previous |  Up |  Next

Article

Keywords:
whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral
Summary:
The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.
References:
[1] J. Guckenheimer and P. J. Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer Verlag, New York, Heidelberg, Berlin, 1983. MR 0709768
[2] C. Chicone: Bifurcations of nonlinear oscillations and frequency entrainment near resonance. SIAM J. Math. Anal. 23(6) (1992), 1577–1608. DOI 10.1137/0523087 | MR 1185642 | Zbl 0765.58018
[3] C. Chicone: On bifurcation of limit cycles from centers. Lecture Notes in Math., 1455, 1991, pp. 20–43. MR 1094376
[4] H. Kauderer: Nichtlineare mechanik. Springer Verlag, Berlin, Gottingen, Heidelberg, 1958. MR 0145709 | Zbl 0080.17409
[5] Ch. Li and Z.-F. Zhang: A criterion for determining the monotonicity of the ratio of two abelian integrals. Journal of Differential Equations 124 (1996), 407–424. DOI 10.1006/jdeq.1996.0017 | MR 1370149
[6] A. D. Morozov: On limit cycles and chaos in equations of pendulum type. Prikladnaja matematika i mechanika 53(5) (1989), 721–730. (Russian) MR 1040438
[7] S.-L.Qiu and M. K. Vamanamurthy: Sharp estimates for complete elliptic integrals. Siam J. Math. Anal. 27(3) (1996), 823–834. DOI 10.1137/0527044 | MR 1382835
[8] J.A. Sanders and R. Cushman: Limit cycles in the Josephson equation. SIAM J. Math. Anal. 17(3) (1986), 495–511. DOI 10.1137/0517039 | MR 0838238
[9] E. T. Whittaker and G. N. Watson: A Course of Modern Analysis. Cambridge at the University Press, 1927. MR 1424469
[10] S. Wiggins: Global Bifurcations and Chaos: Analytical Methods. Springer Verlag, New York, Heidelberg, Berlin, 1988. MR 0956468 | Zbl 0661.58001
[11] S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer Verlag, New York, Heidelberg, Berlin, 1990. MR 1056699 | Zbl 0701.58001
Partner of
EuDML logo