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1. Introduction

We will consider the second-order differential equation

(1) ẍ = sinx(cosx− γ) + εẋ(cosx+ α), x ∈ S1.

For ε = 0 this equation models the motion of a pendulum with length L in the
plane rotating about its vertical axis with constant rotation rate ω. (The whirling

pendulum with non-constant rotation rate is considered in [10].) The parameter
γ is defined as γ = g/Lω2. The perturbation represents a small external forcing

periodically dependent on the deviation x. Equations of such type were examined in
the papers [6] and [8], which dealt with the perturbed harmonic oscillator ẍ = − sinx.

The perturbation g(x) = ẋ(cosx+ α) is the same as in the above mentioned papers
for a special choice of parameters. Particularly, in [8] the Josephson equation with

the perturbation g1(x) = a − ẋ(1 + γ cosx) is considered, where a = εa represents
a small output voltage in Josephson junction; we suppose a = 0. In [6], for the

perturbation g2(x) = cosnx + α, n ∈ N , it is shown that the system has n limit
cycles; we suppose n = 1.
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As a powerful tool, we use the Melnikov function, whose zeros correspond to limit

cycles. However, looking for these zeros is not easy. It often leads to expressions with
elliptic integrals, where the implicit relationship between the elliptic modulus k and
the energy level h is complicated. That is why the direct calculations usually bring

only incomplete results. A useful technique is deriving the so called Picard-Fuchs
equations for integrals in the Melnikov function and then analyzing the equation

which results from them. There are no known general techniques for the analysis of
the resulting equation and one must solve it case by case. This approach was used

in the study of limit cycles in the Josephson equation [8]. We have succeeded in
applying it only partly for some values of the parameter γ. This is mainly caused by

the complicated expression standing for the energy of the whirling pendulum. We
have obtained more complete results by applying the Li and Zhang criterion (see

[5]), which allows to examine the monotonicity of the ratio of two Abelian integrals
without calculating them.

The paper is organized as follows. In Section 2 we shortly describe the whirling

pendulum and its dynamics. In Section 3 we examine local bifurcations of a per-
turbed system. The Melnikov function and some of its properties are derived in

Section 4; we give a full description of the phase portrait of (1) for some values of
the parameter γ there. The other cases are considered in Section 5, where the Li

and Zhang criterion is described and used to determine intervals of monotonicity of
the Melnikov function.

2. Whirling pendulum

The whirling pendulum is shown in Fig. 1. It consists of a rigid frame that freely

rotates about a vertical axis with constant rotation rate ω, to which a planar pen-
dulum with length L is attached, the pivot being on the vertical axis.

�
x

ω

L

�

x–angle deviation

ω–rotation rate

L–length of pendulum

Figure 1. Whirling pendulum
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If the angle deviation is denoted by x, the motion of the system can be described

by the equation

(2) ẍ = − g

L
sinx+ ω2 sinx cos x, x ∈ S1

(see [4], p. 272).

Introducing a new variable y = ẋ and then changing the variables y → ωy, t → t/ω

converts (2) to an equivalent planar system of first-order equations

ẋ = y(3)

ẏ = sinx(cosx− γ),

where γ = g/Lω2.
This system is hamiltonian with the energy

(4) H(x, y) =
1
2
y2 − γ cosx+

1
2
cos2 x+ γ − 1

2
.

Its levels H−1(h) = Γh correspond to trajectories of the system (3).

� �

Γ+h

Γ−h

Γ0h

Figure 2. Phase portrait for γ � 1.

� �

Γ+h

Γ−h

Γ0h

Figure 3. Phase portrait for γ < 1.

Depending on γ, we have two qualitatively different dynamics of (3):

Case (A) (see Fig. 2). For γ � 1 (i.e. for small rotation rate), dynamics is the
same as that of a planar pendulum: it has two fixed points—a center A1 = (0, 0), a

saddle A2 = (�, 0), and two types of periodic orbits:
(i) If h ∈ (0, 2γ), then the level set H−1(h) is connected and it is equal to a

periodic orbit Γ0h of (3), i.e. the equation (3) possesses a family {Γ0h ; h ∈ (0, 2γ)} of
periodic orbits. We call this family (in accordance with [3]), the period annulus. It

corresponds to oscillations about the stable equilibrium A1.
(ii) For h > 2γ, the set H−1(h) has two components—orbits Γ+h for y > 0, cor-

responding to clockwise rotations of the pendulum, and orbits Γ−h for y < 0 cor-
responding to counterclockwise rotations. The boundary between the sets P0 =
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{H−1(h) ; h ∈ 〈0, 2γ)} and P+ = {H−1(h) ; h > 2γ, y > 0} is formed by a homo-
clinic orbit Γ+ = H−1(2γ) ∩ {(x, y) ; y > 0} (analogously for y < 0).
Case (B) (see Fig. 3). If γ < 1, i.e. if ω passes through the critical value ωkrit =

(g/L)1/2, the situation inside the region bounded by homoclinic orbits Γ+ and Γ−

changes: a stable center A1 becomes an unstable saddle and two new equilibria
(stable centers) appear at points ±A3 = (± arccosγ, 0).

In the sequel, we will take into consideration only the point A3, since, due to
symmetry, the results for −A3 are analogous.

The center A3 is surrounded by periodic orbits Γ∗h, corresponding to oscillations
for energy values h ∈ 〈−0.5(1− γ)2, 0). Each Γ∗h represents one of two components

of the set H−1(h) in the right part of the phase plane.
The saddle A1 is connected to itself by two homoclinic orbits +Γ∗ = {(x, y), x >

0} ∩H−1(0) and −Γ∗ = H−1(0) ∩ {(x, y) ; x < 0}, which form a boundary between
the sets P0 = {H−1(h) ; h ∈ 〈0, 2γ)} and P∗ = {H−1(h) ; h ∈ 〈− 12 (1− γ)2, 0)}.
From here on we use the superscripts 0, ± and ∗ to denote, which Γh-family is

being used; for instance, A0(h) denotes a function A(h) restricted to P0.

3. Local bifurcations

The equation (1) can be written as a system

ẋ = y

ẏ = sinx(cos x− γ) + εy(cosx+ α),(5)

which is not hamiltonian. Its equilibria are the same as those of (3) (cases (A) and
(B)), but their stability type depends on the values of α. Linearization of the system

(5) at the point (x, 0) is

L(x, 0) =

(
0 1

cosx(cos x− γ)− sin2 x ε(cosx+ α)

)
.

In the case (A), the equilibrium A1 is a sink for α < −1 and a source for α > −1. For
α = −1, L(0, 0) has a pair of pure imaginary eigenvalues. By direct calculation one
can observe that the conditions of the Poincaré-Andronov-Hopf theorem (see [11],

p. 276) are satisfied. It means that for α > −1 (sufficiently close to α = −1) and for
each ε > 0 sufficiently small, the system has a unique stable periodic orbit, which

bifurcates from the center A1 via the Hopf bifurcation.
In the case (B), the equilibrium A3 is a sink for α < −γ and a source for α > −γ.

Similarly as in the case (A), it can be proved that the Hopf bifurcation occurs for
α = −γ and a stable periodic orbit is born at the center A3 for α > −γ.
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4. Global dynamics

A local analysis of the system (5) shows that for values of the parameter α close

to the bifurcation values (α = −1 in the case (A) and α = −γ in the case (B)) there
exists a limit cycle in (5). However, we have not yet answered the question if there

exist limit cycles also for other values of α, and how many of them there are.
It is clear that for α < −1 the sink A1 in the case (A), resp. ±A3 in the case (B)

is a global attractor. In this case the perturbation adds to ẏ a negative term for
y > 0 and a positive term for y < 0. Thus all periodic orbits are destroyed and the

energy decreases along perturbed orbits. Similarly, for α > 1 the source A1 (±A3)
is a global repelor.

If |α| < 1, the sign of the perturbation changes along orbits and depends on the
values of parameters α, γ and the energy levels h. A phase portrait can be derived

by computing the Melnikov function along each unperturbed solution.
Let T (h) denote the period of an unperturbed orbit Γh on the energy level h and

let the corresponding solution be t �→ (x(t), y(t)). Then the Melnikov function along
Γh is

(6) M(h) =
∫ T (h)

0
y2(t)(cos x(t) + α) dt.

If α < −1, then the integrand is negative, and hence M(h) < 0 for any energy level

h. According to [1] (see Theorems 4.6.2 and 4.5.3) or [2], there is neither a periodic
orbit, nor a homoclinic orbit in (5). It is easy to obtain the same result for α > 1.

Before starting to search zeros of M(h) for α ∈ 〈−1, 1〉, let us arrange (6) into a
more suitable form. Denoting

(7) B(h) =
∫

Γh

y dx, C(h) =
∫

Γh

y cosxdx,

we obtain

(8) M(h) = C(h) + αB(h).

Hence the Melnikov function equals zero for those values of the parameter α and the
energy level h for which

(9) α = −C(h)B(h) .

Thus, instead of solving the equation M(h) = 0, we can examine the function

(10) A(h) = −C(h)
B(h)
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defined on D(A) = 〈hmin,∞) with

(11) hmin =

{
0, for γ � 1,
−0.5(1− γ)2, for γ < 1.

It is clear that the Melnikov function is zero exactly for those values of the parameter
α for which there exists an energy level h such that α = A(h). In addition, from (8)
we have

dM
dh
=M ′(h) = C′(h) + αB′(h),

and hence, after recalling α = −C(h)/B(h) we find that M ′(h) 	= 0 if and only if

BC′ − CB′ 	= 0,

and this is equivalent to the condition A′ 	= 0. This condition guarantees, for given
values of parameters and for sufficiently small ε, the existence of exactly one limit
cycle in the system (see [1], Theorem 4.6.2).

Inside the period annuli, the function B(h) (and similarly C(h)) can be expressed
as follows:

B∗(h) = 2
∫ x2h

x1h

y+ dx,

B0(h) = 4
∫ xh

0
y+ dx,

B±(h) = 2
∫

�

0
y± dx,(12)

where

y± = ±
√
2h− 2γ + 1 + 2γ cosx− cos2 x,

xh = arccos
(
γ −

√
(γ − 1)2 + 2h

)
,

x1,2h = arccos
(
γ ±

√
(γ − 1)2 + 2h

)
.(13)

Using (14) and realizing that C(h) may be expressed in a similar way, we have
A+(h) = A−(h). Taking into account the expressions for B(h) and C(h), we have
the following obvious result:

Lemma 1. For any value of the parameter γ and for any h ∈ D(A),

|A(h)| � 1.

Using [1], Theorem 4.5.3 and Theorem 4.6.2, we obtain

Proposition 1. If |α| > 1, then the system (5) has neither a periodic nor a
homoclinic orbit.
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The next lemma describes how the function A(h) behaves at boundary points of
its domain, i.e. at the points −0.5(1− γ)2, 0, 2γ, ∞.

Lemma 2. The function A(h) is continuous on its whole domain with

lim
h→∞

A(h) = 0

and

(14) lim
h→hmin

A(h) =
{
−1, for γ � 1,
−γ, for γ < 1.

�����. Since B(h) = 0 only for h = hmin, it suffices to prove the continuity of
A(h) only on the boundaries of the period annuli. Using the definition of B(h), we
obtain for the energy levels corresponding to the homoclinic orbits (i.e. h = 0 and
h = 2γ):

lim
h→0−

B∗(h) = 2 lim
h→0−

∫ x2h

x1
h

y dx = 2
∫ arccos(2γ−1)

0
y(0) dx,

lim
h→0+

B0(h) = 4 lim
h→0+

∫ xh

0
y dx = 4

∫ arccos(2γ−1)

0
y(0) dx,

lim
h→2γ−

B0(h) = 4 lim
h→2γ−

∫ xh

0
y dx = 4

∫
�

0
y(2γ) dx,

lim
h→2γ+

B±(h) = 2 lim
h→2γ+

∫
�

0
y dx = 2

∫
�

0
y(2γ) dx.

Similar expressions can be obtained for the function C(h). The continuity on the
boundaries of the period annuli then immediately follows from (10).

The limit lim
h→hmin

A(h) can be derived using the Stokes theorem. Let us denote by
D(h) the region in the phase space bounded by the trajectory Γ0h. Then

lim
h→hmin

A(h) = −
lim

h→hmin

∫
Γh

y cosxdx

lim
h→hmin

∫
Γh

y dx

= −
lim

h→hmin

∫
Dh
cosxdy dx

lim
h→hmin

∫
Dh
dy dx

=

{
−1, for γ � 1,
−γ, for γ < 1.

Now we shall prove that lim
h→∞

A(h) = 0. In P+ we have

(15)
√
2h− 4γ � y+(h) �

√
2h+ 1.
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After integrating C(h) by parts we obtain

(16) C(h) =
∫

Γh

y cosxdx = −
∫

Γh

dy
dx
sinxdx =

∫

Γh

sin2 x

y
(γ − cosx) dx.

From (12) and (13) it follows that

2�
√
2h− 4γ � B+(h) � 2�

√
2h+ 1

and

C+(h) � 2� γ + 1√
2h− 4γ .

From the last two inequalities and from (10) we obtain that

|A+(h)| � γ + 1
2h− 4γ → 0.

�

Lemma 3. If γ � 1, then the function A(h) is negative for h ∈ 〈0,∞) and strictly
increasing on the interval (2γ,∞).

�����. Obviously B∗(h) � 0, B+(h) � 0, B−(h) � 0, and from (16) it follows
that also C∗(h) � 0, C+(h) � 0, C−(h) � 0 for all h ∈ 〈0,∞). Both functions are
zero only at h = hmin = 0, where lim

h→0
A(h) = −1 (see (14) in Lemma 2). So A(h) is

negative for h ∈ 〈0,∞).
The derivative of the function A(h) is

(17) A′ = B′C − C′B
B2 .

We obtain from (20) that if h ∈ (2γ,∞), then

C′(h) = −2
∫

�

0

sin2 x

y3
(γ − cosx) dx < 0

and

B′(h) = 2
∫

�

0

dx
y

> 0.

These two inequalities together with (21) give A′(h) > 0, i.e. A+(h) is a strictly
increasing function for any γ � 1. �
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Lemma 4. For γ = 1 the function A(h) satisfies the differential equation

(18) 2hA′ = 2A(1−F) + 2F − 1,

where F(h) is strictly increasing on 〈0, 2) with the minimal value F(0) = 3
4 .

�����. From (4) it follows that cos2 x = (2h− 2γ + 1)+ 2γ cosx− y2. Putting

it into (16), we obtain for γ = 1

C(h) =
∫

Γh

1− cos2 x

y
(1− cosx) dx =

∫

Γh

2− 2h− 2 cosx+ y2

y
(1− cosx) dx.

While B′(h) =
∫
Γh
dx/y and C′(h) =

∫
Γh
cosxdx/y, the last expression results in

C = (2− 2h)B′ + (2h− 4)C′ + B − C + 2
∫

Γh

cos2 xdx
y

= 2h(B′ + C′)− B − C

and this yields

(19) 2C + B = 2h(B′ + C′).

Using (17) and (19) we obtain

2hA′ = 2hB
′C − BC′
B2 = 2A(1− h

B′
B ) + 2h

B′
B − 1.

If we indicate

(20) F(h) = h
B′
B ,

we obtain the equation (18). Now, it remains just to show that F(h) has the above
mentioned properties. First, let us compute B′(h).
On the interval (0, 2) we have

B′(h) = 4
∫ xh

0

dx√
2h− 1 + 2 cosx− cos2 x

.

After standard tedious arrangements (see for instance [9]) we obtain

(21) B′(h) = 4
4
√
2h

∫ 1

0

ds√
1− s2

√
1− k2s2

=
4
4
√
2h

K(k),
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where K(k) is the complete elliptic integral of the first kind with the elliptic modulus

k =

√
h+

√
2h

2
√
2h

.

With h increasing on 〈0, 2〉, the elliptic modulus k increases on 〈0.5, 1〉.
The integral K(k) can be expressed via the infinite series

K(k) =
�

2

(
1 +

(
1 · 3
2 · 4

)2
k2 +

(
1 · 3 · 5
2 · 4 · 6

)2
k4 + . . .

)
=

∞∑

n=0

Cnk2n,

which is increasing for k ∈ 〈0, 1〉 with

lim
k→0+

K(k) = K(0) =
�

2
, lim

k→1−
K(k) = +∞.

The integral K(k) can be estimated by

(22) K(k) < ln
4√
1− k2

(
1 +
1
4
k′2
)

(see [7], Theorem 1.3), which guarantees the convergence of the sum (21) for any

given h ∈ (0, 2).
Substituting K(k) into (21) and using the binomial expansion we obtain

(23) B′(h) = 2�

h
1
4
4
√
2

∞∑

n=0

Cn

n∑

k=0

(
n

k

)(√
h

2

)k

.

Integration of the last equation gives

(24) B(h) = 8�h
3
4

4
√
2

∞∑

n=0

Cn

n∑

k=0

(
n

k

)
1

2k + 3

(√
h

2

)k

.

The infinite series in (24) is convergent for any given h, since the series in (23) is its

majorant.

If we substitute (23) and (24) into (20), we obtain

(25) F(h) = 1
4

∞∑
n=0

Cn

n∑
k=0

(
n
k

)(√
h
2

)k

∞∑
m=0

Cm

m∑
l=0

(
m
l

)
1
2l+3

(√
h
2

)l
.

280



From the last equation it is easy to see that F(0) = 3
4 . By differentiating (25) and

after some arrangements we obtain

(26) F ′(h) = 1
16

∞∑
n=0

∞∑
m=0

CnCm

n∑
k=0

m∑
l=0

(
n
k

)(
m
l

)(√
h
2

)k+l−2
k−l
2l+3

( ∞∑
m=0

Cm

m∑
l=0

(
m
l

)
1
2l+3

(√
h
2

)l
)2 .

Now, we modify this expression in the following way: each summand in the numerator
determined by the quadruple (n, m, k, l) will be added to the summand determined

by the quadruple (m, n, l, k). These summands are almost the same; the difference
is only in the last fraction. Summing these fractions gives

k − l

2l+ 3
+

l − k

2k + 3
=

2(k − l)2

(2l + 3)(2k + 3)
.

Then (26) can be arranged as an infinite series with nonegative terms, which means

that F ′(h) > 0 and hence F ′(h) is strictly increasing. �

Theorem 1. The function A(h) is for γ = 1 strictly increasing on its domain
with the range 〈−1, 0).

�����. Lemma 1 and Lemma 3 imply that A(h) ∈ 〈−1, 0). Substituting it in
(18), we obtain the estimate

2hA′ > 4F − 3 > 0,

which is valid for any h ∈ (0, 2). This means that A0(h) is a strictly increasing
function. Lemma 2 implies that the range of A is the whole interval 〈−1, 0). �

Corollary 1. (Phase portrait of (5) for γ = 1.) If γ = 1, then for any α ∈ (−1, 0)
and for any sufficiently small ε the system (5) has exactly one ω-limit closed phase

curve (periodic or homoclinic orbit), which is ε-close to Γh with the energy level

h = A−1(α).

�����. To prove existence and uniqueness of a limit cycle or a homoclinic orbit,

it is sufficient to show (see [1], Theorem 4.5.3 and Theorem 4.6.2) that the zeros of
the Melnikov integral are simple, that is, if

M(h) = C(h) + αB(h) = 0,

then
M ′(h) = C′(h) + αB′(h) 	= 0.
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Since at the zero point we have α = −C(h)/B(h), the last inequality is true only if

BC′ − CB′ 	= 0.

However, this inequality is true due to the fact that A(h) is strictly increasing, so
A′(h) 	= 0. �

We have not succeeded in using the same procedure as above for a parameter

γ 	= 1. Difficulties are caused by a complicated expression for the function B′, which
is, for instance, for γ = 1 + µ, µ > 0, given by

B′(h) = 4
4
√
2h+ µ2

K(k),

where k =

√
h−µ+

√
2h+µ2

2
√
2h+µ2

.

In the next section we describe a quite general method which allows us to analyze

the intervals of monotonicity of the function A(h) also for γ 	= 1.

5. Criterion of Li and Zhang

First, we describe the criterion given by Li and Zhang in [5]. Then we apply it to
the system (5).

Consider the system

ẋ = Ψ′(y)(27)

ẏ = −Φ′(x) + εg(y)(αf1(x) + f2(x)),

where Φ ∈ C2[a1, b1], f1, f2 ∈ C1[a1, b1], Ψ, g ∈ C2[a2, b2].
If ε = 0, then the system (27) is hamiltonian with the energy

(28) H(x, y) = Φ(x) + Ψ(y).

Let us suppose that the levels of the energy h = H(x, y) on the interval (a1, b1) ×
(a2, b2) are changing along an interval (h1, h2). Each compact component Γh of the

level curve
H−1(h) = {(x, y) ; H(x, y) = h}, h ∈ (h1, h2)

corresponds to a closed orbit of the system (27). Denote by l(h) and u(h) the border
points of the variable x on the orbit Γh, while the border points of the variable y

will be denoted by L(h) and U(h) (see Fig. 4). Assume that there exists a point
(x0, y0) ∈ (a1, b1)× (a2, b2) such that the following hypothesis is satisfied:
(H) Φ′(x)(x − x0) > 0 (or < 0) and Ψ′(y)(y − y0) > 0 (or < 0), where (x, y) ∈

(a1, b1)× (a2, b2) \ {(x0, y0}.
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U(h)

L(h)

y0

y

u(h)l(h) x0 x

�

�

Figure 4. Phase portrait of (31) with ε = 0

This hypothesis requires the orbits of (27) to be
• symmetric in the following sense: there exist one-to-one mappings

〈l(h), x0〉 −→ 〈x0, u(h)〉 : x �→ x̃,

〈L(h), y0〉 −→ 〈y0, U(h)〉 : y �→ ỹ,

for which

Φ(x) = Φ(x̃), Ψ(y) = Ψ(ỹ)

dx̃
dx
=
Φ′(x)
Φ′(x̃)

< 0,
dỹ
dy
=
Ψ′(y)
Ψ′(ỹ)

< 0.(29)

Since, for given h, (28) gives y(x) = Ψ−1(h − Φ(x)), we have y(x) = y(x̃),
ỹ(x) = ỹ(x̃) for x ∈ (l(h), x0). It implies that Γh consists of two branches y(x)

and ỹ(x), which are symmetric to each other with respect to y = y0, and each
of them is symmetric with respect to x = x0.

• monotonic on intervals (l(h), x0), (x0, u(h)), (L(h), y0), (y0, U(h))—Φ′(x) and
Ψ′(x) do not change sign on these intervals.

For ε 	= 0 the existence and the number of periodic orbits of the system (27) can
be found by computing zeros of the Melnikov function along each orbit Γh, i.e. by
solving the equation

M(h) =
∫

Γh

g(y) (αf1(x) + f2(x)) dx = 0.

This equation is equivalent to the equation

α = −I2(h)
I1(h)

, where Ik(h) =
∫

Γh

fk(x)g(y) dx, k = 1, 2.
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Similarly as in §4, we are interested in the behaviour of the function

A(h) = −I2(h)
I1(h)

, h ∈ (h1, h2).

Theorem 2. (See [5], Theorem 1.) Let f1(x)f1(x̃) > 0, g′(y)g′(ỹ) > 0 for each

(x, y) ∈ (l(h), x0)× (L(h), y0) and let (H) be satisfied. Denote

ξ(x) =
f2(x)Φ′(x̃)− f2(x̃)Φ′(x)
f1(x)Φ′(x̃)− f1(x̃)Φ′(x)

,(30)

η(y) =
(g(ỹ)− g(y))Ψ′(ỹ)Ψ′(y)
g′(ỹ)Ψ′(y)− g′(y)Ψ′(ỹ)

.(31)

Then ξ′(x)η′(y) > 0 (< 0) implies A′(h) < 0 (> 0).

Now, we apply Theorem 2 to the system (5). Since the assumptions require
symmetry and monotonicity related to both variables, we can use it only in the

regions P0 in the case (A) and P∗ in the case (B).
We have

f1(x) = 1, f2(x) = cosx, g(y) = y,

Φ(x) =
1
2
cos2 x− γ cosx, Ψ(y) =

1
2
y2 + γ − 1

2
,

Φ′(x) = sinx(γ − cosx), Ψ′(y) = y.

Case (A). In the region P0 we have 〈a1, b1〉 = 〈−�, �〉, 〈a2, b2〉 = 〈−2
√

γ, 2
√

γ〉 and

(x0, y0) = (0, 0), x̃ = −x, ỹ = −y.

Then

– Φ′(x)(x − x0) = x sinx(γ − cosx) > 0,
– Ψ′(y)(y − y0) = y2 > 0,

– Φ(x) = Φ(x̃), Ψ(y) = Ψ(ỹ),
– Φ′(x)/Φ′(x̃) = sinx(γ − cosx)/ sin x̃(γ − cos x̃) = −1 < 0,

– Ψ′(y)/Ψ′(ỹ) = y/ỹ = −1 < 0,
– g′(y)g′(ỹ) = 1 > 0, f1(x)f1(x̃) = 1 > 0.

Let us compute the functions ξ(x) and η(y) for (x, y) ∈ (−�, 0)× (−2√γ, 0):

ξ(x) =
cosx sin x̃(γ − cos x̃)− cos x̃ sinx(γ − cosx)

sin x̃(γ − cos x̃)− sinx(γ − cosx) = cosx,

η(y) =
(ỹ − y)ỹy

y − ỹ
= y2.
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Then ξ′(x) η′(y) = (− sinx)2y < 0 and Theorem 2 implies A′(h) > 0.

Case (B). In the region P∗ we have 〈a1, b1〉 = 〈0, arccos(2γ − 1)〉, 〈a2, b2〉 =
〈γ − 1, 1− γ〉 and

(x0, y0) = (xγ , 0), x̃ = arccos(2γ − cosx), ỹ = −y.

Then

– Φ′(x)(x − x0) = (x− xγ) sinx(γ − cosx) > 0,

– Ψ′(y)(y − y0) = y2 > 0,

– Φ(x̃) = 1
2 (2γ − cosx)2 − γ(2γ − cosx) = 1

2 cos
2 x− γ cosx = Φ(x),

– Ψ(y) = Ψ(ỹ),

– Φ′(x)/Φ′(x̃) = sinx(γ− cosx)/ sin x̃(γ− (2γ− cosx)) = − sinx/ sin x̃ < 0, since
x and x̃ are in the interval (0, �).

– Ψ′(y)/Ψ′(ỹ) = y/ỹ = −1 < 0,

– g′(y)g′(ỹ) = 1 > 0,

– f1(x)f1(x̃) = 1 > 0.

Let us compute the functions ξ(x) and η(y) for (x, y) ∈ (0, xγ)× (γ − 1, 0):

ξ(x) =
cosx sin x̃(γ − (2γ − cosx))− cos x̃ sinx(γ − cosx)

sin x̃(γ − (2γ − cosx))− sinx(γ − cosx) =
sin(x+ x̃)
sinx+ sin x̃

,

η(y) =
(ỹ − y)ỹy

y − ỹ
= y2.

The derivative of the function ξ(x) is

ξ′(x) =
cos(x+ x̃)(1 + dx̃

dx)(sin x+ sin x̃)− (cosx+ cos x̃ dx̃dx ) sin(x+ x̃)

(sinx+ sin x̃)2
.

To find the sign of the derivative, we arrange the nominator of it. Using (29), we

obtain
dx̃
dx
=
Φ′(x)
Φ′(x̃)

= − sinx

sin x̃
.

Hence

ξ′(x) =
4γ(1− cosx cos x̃+ sinx sin x̃)(γ − cosx)

sin x̃(sinx+ sin x̃)2
.

Since x ∈ (0, arccosγ), we have γ − cosx < 0, and sinx sin x̃ > 0. So ξ′(x) < 0.

Then ξ′(x)η′(y) > 0 and Theorem 2 implies A′(h) < 0.

Combining these conclusions with those of §4, we obtain the following theorem:
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Theorem 3.
i) If γ � 1, then the function A(h) is strictly increasing on its domain with the
range 〈−1, 0).

ii) If γ < 1, then the function A(h) is strictly decreasing on 〈− 12 (1 − γ)2, 0〉 with
the range 〈A(0),−γ〉.

Corollary 2. (Phase portrait of the system (5))
i) If γ � 1, then for any α ∈ (−1,A(2γ)) and for any ε sufficiently small, the

system (5) has exactly one periodic orbit K(α) which is ε-close to Γh with

energy level h = A−1(α). The family of orbits {K(α) ; α ∈ (−1,A(2γ))} is
born via Hopf bifurcation at αb = −1, and vanishes at α = A(2γ) where the
homoclinic orbit (which is ε-close to the homoclinic orbit of the unperturbed

system) is formed.

For any α ∈ (A(2γ), 0), there are exactly two periodic orbits of the system
(5)—the first in P+, the other in P−.
For other parameter values of α, there is neither a periodic nor a homoclinic

orbit.

ii) If γ < 1, then, in the region P∗, the system (5) has exactly one periodic orbit
for any α ∈ (A(0),−γ) and for any ε sufficiently small, and no periodic orbit

for other parameter values of α.

In addition, there exist parameter values α1 and α2 close to the values A(0)
and A(2γ), for which the system (5) has homoclinic orbits, which are ε-close to

the homoclinic orbits of the unperturbed system.

�����. The arguments are the same as those in the proof of Corollary 1 and
Proposition 1. The existence of homoclinic orbits can be derived from continuity of

the function A(h) at the point h = 2γ in the case (A), and at the points h = 0,
h = 2γ in the case (B). �

There still remains an unsolved part of the problem: we have not yet said how the
function A(h) behaves for γ < 1 on the interval (0,∞). In numerical experiments it
has the same course as the function A(h) for γ � 1 on the interval (2γ,∞). However,
we have not succeeded in proving it analytically. In the end, we want to show the

problem which we have to face in order to prove the monotonicity of the function
A(h) in the region P0, where the trajectories are not monotonic.
The sign of the derivative A(h) depends only on the sign of the expression

(32) G(h) = B(h)C′(h)− C(h)B′(h).
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In the region P0 we have

B(h) = 2
∫ xh

−xh

y+ dx C(h) = 2
∫ xh

−xh

y+ cosxdx.

Using (12) we obtain

B′(h) = 2
∫ xh

−xh

dx
y

, C′(h) = 2
∫ xh

−xh

cosx
y
dx,

where y = y+. Substituting it into (32), we obtain

1
4
G(h) =

∫ xh

−xh

y dx
∫ xh

−xh

cosx
y
dx−

∫ xh

−xh

y cosxdx
∫ xh

−xh

dx
y

=
1
2

∫ xh

−xh

∫ xh

−xh

(cos x1 − cosx2)
(

y(x2)
y(x1)

− y(x1)
y(x2)

)
dx1 dx2

=
1
2

∫ xh

−xh

∫ xh

−xh

(cos x1 − cosx2)2
y(x2)y(x1)

(cosx1 + cosx2 − 2γ) dx1 dx2.

If we recall (13) and realize that γ < 1, h ∈ 〈0, 2γ〉, we find that the expression
(cosx1+cosx2−2γ) changes its sign, and we are not able to say anything about the
sign of G(h). We must leave this case of symmetric and nonmonotonic trajectories

for further investigation, as well as the case of free rotations, i.e. the trajectories in
the regions P+ and P−.
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