[1] G. Allaire, R. V. Kohn:
Optimal bounds on the effective behaviour of a mixture of two well-ordered elastic materials. Q. Appl. Math. 51 (1993), 643–674.
DOI 10.1090/qam/1247433 |
MR 1247433
[8] G. Francfort, F. Murat:
Homogenization and optimal bounds in linear elasticity. Arch. Rat. Mech. Anal. 94 (1986), 307–334.
DOI 10.1007/BF00280908 |
MR 0846892
[9] K. Golden, G. Papanicolaou:
Bounds for effective parameters of heterogeneous media by analytic continuation. Comm. Math. Phys. (1983), 473–491.
DOI 10.1007/BF01216179 |
MR 0719428
[14] R. V. Kohn, R. Lipton:
Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials. Arch. Rat. Mech. Anal. 102 (1988), 331–350.
DOI 10.1007/BF00251534 |
MR 0946964
[16] K. A. Lurie, A. V. Cherkaev:
Exact estimates of the conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proc. Roy. Soc. Edinburgh 99A (1984), 71–87.
MR 0781086
[20] P. Suquet: Plasticite et homogeneisation. These, Paris VI (1982).
[22] N. Svanstedt: Bounds for homogenized constitutive laws in non-linear elasticity and plasticity (in preparation).
[23] D. R. S. Talbot, J. R. Willis:
Some simple explicit bounds for the overall behaviour of nonlinear composites. Int. J. Solids Struct. 29 (1992), 1981–1987.
MR 1173106
[24] D. R. S. Talbot, J. R. Willis: Upper and lower bound for the overall properties of a nonlinear composite dielectric I. Random microgeometry. Proc. Royal Soc. London A 447 (1994) (to appear), 365–384.
[25] L. Tartar:
Estimations fines des coefficients homogenises. Ennio De Giorgi Colloquium, P. Kree (ed.), Pitman Publ., London, 1985, pp. 168–187.
MR 0909716
[26] L. Tartar:
H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh 115A (1990), 193–230.
MR 1069518
[27] S. Torquato:
Random Heterogeneous media: Microstructures and improved bounds on effective properties. Appl. Mech. Rev. 44 (1991), 37–76.
DOI 10.1115/1.3119494 |
MR 1092035
[28] L. J. Walpole:
On bounds for the overall elastic moduli of anisotropic composites. J. Mech. Phys. Solids 14 (1966), 151–162.
DOI 10.1016/0022-5096(66)90035-4
[32] E. Zeidler: Nonlinear Functional Analysis and its Applications, Volume III. Springer-Verlag, 1990.