[Ada] R. A. Adams:
Sobolev Spaces. Academic Press, New York. 1975.
MR 0450957
[All1] G. Allaire: Two-scale convergence and homogenization of periodic structures. School on homogenization, ICTP, Trieste, September 6–17, 1993.
[All2] G. Allaire:
Homogenization of the unsteady Stokes equation in porous media. Progress in pdes: calculus of variation, applications, Pitman Research notes in mathematics Series 267, C. Bandle et al. (eds.), Longman Higher Education, New York, 1992.
MR 1194192
[Alt] H. W. Alt:
Lineare Funktionalanalysis. Springer-Verlag, 1985.
Zbl 0577.46001
[Att] H. Attouch:
Variational Convergence of Functions and Operators. Pitman Publishing Limited, 1984.
MR 0773850
[Bens] A. Bensoussan, J. L. Lions, G. Papanicolau:
Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, North-Holland, 1978.
MR 0503330
[BeLö] J. Bergh, J. Löfström:
Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaft, Springer-Verlag, 1976.
MR 0482275
[BraOts] S. Brahim-Otsmane, G. Francfort, F. Murat:
Correctors for the homogenization of the wave and heat equation. J. Math. Pures Appl 9 (1992).
MR 1172450
[CoFo] P. Constantin, C. Foiaş:
Navier-Stokes equations. The University of Chicago Press, Chicago, 1989.
MR 0972259
[DM] G. Dal Maso:
An introduction to $\Gamma $-convergence. Progress in Nonlinear Differential Equations and their Applications, Volume 8, Birkhäuser Boston. 1993.
MR 1201152
[Defr] A. Defranceschi: An introduction to homogenization and G-convergence. School on homogenization, ICTP, Trieste, September 6–17, 1993.
[HolWel] A. Holmbom, N. Wellander: Some results for periodic and non-periodic two-scale convergence. Working paper No. 33 University of Gävle/Sandviken, 1996.
[LiMa] J. L. Lions, E. Magenes: Non Homogeneous Boundary Value problems and Applications II. Springer-Verlag, Berlin, 1972.
[Nand] A. K. Nandakumaran:
Steady and evolution Stokes equations in a porous media with Non-homogeneous boundary data. A homogenization process. Differential and Integral Equations 5 (1992), no. 1, 73–93.
MR 1141728
[Ngu1] G. Nguetseng:
A general convergence result for a functional related to the theory of homogenization. SIAM Journal of Mathematical Analysis 20 (1989), no. 3, 608–623.
DOI 10.1137/0520043 |
MR 0990867 |
Zbl 0688.35007
[Ngu2] G. Nguetseng: Thèse d’Etat. Université Paris 6, 1984.
[Per] L. E. Persson, L. Persson, J. Wyller, N. Svanstedt:
The Homogenization Method—An Introduction. Studentlitteratur Publishing, 1993.
MR 1250833
[SaPa] E. Sanchez-Palencia:
Non-Homogeneous Media and Vibration Theory. Springer Verlag, 1980.
Zbl 0432.70002
[Tem] R. Temam:
Navier Stokes Equation. North-Holland, 1984.
MR 0769654
[Zei] E. Zeidler:
Nonlinear Functional Analysis and its Applications II. Springer Verlag, 1990.
MR 0816732 |
Zbl 0684.47029