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HOMOGENIZATION OF PARABOLIC EQUATIONS

AN ALTERNATIVE APPROACH

AND SOME CORRECTOR-TYPE RESULTS

Anders Holmbom,* Östersund

(Received March 24, 1995)

Abstract. We extend and complete some quite recent results by Nguetseng [Ngu1] and
Allaire [All3] concerning two-scale convergence. In particular, a compactness result for a
certain class of parameterdependent functions is proved and applied to perform an alterna-
tive homogenization procedure for linear parabolic equations with coefficients oscillating in
both their space and time variables. For different speeds of oscillation in the time variable,
this results in three cases. Further, we prove some corrector-type results and benefit from
some interpolation properties of Sobolev spaces to identify regularity assumptions strong
enough for such results to hold.

Keywords: partial differential equations, homogenization, two-scale convergence, linear
parabolic equations, oscillating coefficients in space and time variable, dissimilar speeds of
oscillation, admissible test functions, corrector results, compactness result, interpolation

MSC 2000 : 35B27, 35K99, 73B27, 73K20

1. Introduction

Homogenization is a mathematical technique for the study of effective properties
and microvariations in heterogeneous media through convergence analysis applied

to the classical equations of mechanics. Various concepts of convergence, such as
G-convergence, Γ-convergence and a number of related approaches (see [Att], [Bens],

[DM], [Defr], [Per] and [SaPa]) have been developed for this purpose.
In this paper we apply and extend a quite recent method, two-scale convergence,

to homogenize a class of linear parabolic equations and to prove some corrector-type

*This research was supported by The Swedish Research Council for the Engineering Sci-
ences (TFR), The Swedish National Board for Industrial and Technological Development
(NUTEK), and The County of Jämtland Research Foundation.
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results. Two-scale convergence was first introduced by Nguetseng in [Ngu1] and

further improved by Allaire in [All3]. To be more precise, we will study the limit
behaviour as ε passes to zero of sequences of solutions to equations of the type (see
next page for the notation)

∂tu
ε(x, t)− ∂xj (aij

(x

ε
,

t

εr

)
∂xiu

ε(x, t)) = f(x, t) in Ω× I,

uε(x, 0) = u0(x) in Ω and(1)

uε(x, t) = 0 on ∂Ω,

where r > 0. For f ∈ L2(I;W−1,2(Ω)), u0 ∈ L2(Ω), and aij ∈ L∞� (Y × J) positively
definite, the operator equation (1) possesses a unique solution uε that belongs to

W 1
2 (I;W

1,2
0 (Ω), L

2(Ω)). Further, (1) is equivalent to the corresponding weak formu-
lation

(2)
∫ T

0

∫

Ω
− uε(x, t)v(x)∂tc(t) + aij

(x

ε
,

t

εr

)
∂xiu

ε(x, t)∂xj v(x)c(t) dxdt

=
∫ T

0

∫

Ω
f(x, t)v(x)c(t) dxdt

for all v ∈ W 1,2
0 (Ω) and c ∈ D(I). See [Zei, Ch. 23.7].

This paper is organized as follows: In Section 2, we discuss and slightly amend
some previous results concerning two-scale convergence. In Section 3, we prove an
essential compactness result (Theorem 3.1). In particular, we make use of this result

to perform a quick and convenient homogenization procedure in Section 4. Section
5 is devoted to proving some stronger convergence results (corrector results); see our

Theorems 5.1 and 5.2. Finally, Section 6 is reserved for further results and concluding
remarks. Especially, we prove a theorem (Theorem 6.1) which points out sufficient

regularity assumptions on (1) to guarantee that a certain corrector result holds.
Throughout this report, we adopt the Einstein tensor summation convention.

However, where beneficial to the brevity or transparency of the text, we may use
standard operator symbols such as gradient (∇) or Laplacian (∆). All the notation
for Sobolev spaces is standard and can be found in e.g. [Ada] and in [Zei, Chapter
23], and all limits with respect to ε mean that ε passes to zero. The spaces Hm, Hs,

and Hr,s described below can also be found in Section 4.2.1 in [LiMa].
We introduce some more specific notation used in this report.

I: The intervall ]0, T [.
J : The intervall ]0, 1[.

K(Ω): The space of all continuous functions with compact support in Ω.
Hm(I;L2(Ω)) =

{
u : u, ∂tu, . . . , ∂m

∂mtu ∈ L2(Ω× I)
}
, m integer.
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Hs(I;L2(Ω)) = [Hm(I;L2(Ω)), L2(Ω × I)]θ, s = (1 − θ)m, 0 � θ � 1, where the
brackets mean interpolation between the spaces Hm(I;L2(Ω)) and L2(Ω × I), s is
not necessarily an integer.

Hr,s(Ω× I) = L2(I;W r,2(Ω)) ∩Hs(I;L2(Ω)).

A(Ω;B�(Y )): A mapping of type A(Ω) into a space of type B�(Y ). � means that
the functions in B�(Y ) are periodic with respect to the unit cube Y .

B�(Y ;A(Ω)): A Y -periodic mapping of type B�(Y ) into a space of type A(Ω).
dZ = dxdt dy ds.

2. Two-scale convergence

In this section we study the notion of two-scale convergence that was originally

invented by Nguetseng (see [Ngu1]) and further improved by Allaire (see [All1] and
[All3]). We define two-scale convergence in the shape it was first introduced by

Nguetseng in [Ngu1] and state the corresponding compactness result.

Definition 2.1. A sequence {uε} in L2(Ω) is said to two-scale converge to

u0 ∈ L2(Ω× Y ) if

(3) lim
ε

∫

Ω
uε(x)a

(
x,

x

ε

)
dx =

∫

Ω

∫

Y

u0(x, y)a(x, y) dxdy

for all a ∈ D(Ω;C∞
� (Y ). Sometimes, we will write this as

uε ⇀⇀ u0 in L2(Ω× Y ).

Theorem 2.2. Let {uε} be a bounded sequence in L2(Ω). Then {uε} contains a
subsequence satisfying (3) for some (unique) u0 ∈ L2(Ω × Y ), all a ∈ K(Ω;C�(Y ))
and all a = a1 · a2, a1 ∈ K(Ω), a2 ∈ L2� (Y ).

In [All1] and [All3], Allaire enlarges the class of test functions for which (3) holds to

all functions in L2(Ω;C�(Y )) and, for Ω bounded, in L2�(Y, C(Ω)) and C(Ω;C�(Y )),
and provides an independent proof of Theorem 2.2. We prove the Lp-version of

this result and characterize the corresponding spaces of admissible test functions.
Further, we demonstrate that two-scale convergence works in an unaltered fashion

even if we allow different variables to possess dissimilar speed of oscillation.

Theorem 2.3. Assume that {uε} is a bounded sequence in Lp(Ω× I), p ∈]1,∞],
and that X is a separable subspace of Lq(Ω× I × Y × J) such that, for any a ∈ X

and all r > 0,

(4) lim
ε

∥∥∥∥a
(
x, t,

x

ε
,

t

εr

)∥∥∥∥
Lq(Ω×I)

= ‖a(x, t, y, s)‖Lq(Ω×I×Y×J)
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and

(5)

∥∥∥∥a
(
x, t,

x

ε
,

t

εr

)∥∥∥∥
Lq(Ω×I)

� C ‖a(x, t, y, s)‖X .

Then, at least for a subsequence and for any r > 0, there exists u0 ∈ Lp(Ω× I ×
Y × J) such that

lim
ε

∫ T

0

∫

Ω
uε(x, t)a

(
x, t,

x

ε
,

t

εr

)
dxdt =

∫ T

0

∫

Ω

∫ 1

0

∫

Y

u0(x, t, y, s)a(x, t, y, s) dZ

for all a ∈ X .

�����. We first note that the Hölder inequality, the boundedness of {uε} and
property (5) yield that

∫ T

0

∫

Ω
uε(x, t)a

(
x, t,

x

ε
,

t

εr

)
dxdt � C

∥∥∥∥a
(
x, t,

x

ε
,

t

εr

)∥∥∥∥
Lq(Ω×I)

� C ‖a(x, t, y, s)‖X .

Obviously, {uε} represents a bounded sequence of bounded linear functionals F ε on
X defined through

(F ε, a)X′,X =
∫ T

0

∫

Ω
uε(x, t)a

(
x, t,

x

ε
,

t

εr

)
dxdt.

By assumption, X is a separable Banach space and thus weakly∗ sequentially com-
pact. Hence, up to a subsequence, there exists F ∈ X ′ such that

F ε ⇀ F weakly ∗ in X ′.

Moreover, by the Hölder inequality, the boundedness of {uε} in Lp(Ω × I), and

assumption (4) on a, we achieve

(F, a)X′,X = lim
ε

∫ T

0

∫

Ω
uε(x, t)a

(
x, t,

x

ε
,

t

εr

)
dxdt

� C lim
ε

∥∥∥∥a
(
x, t,

x

ε
,

t

εr

)∥∥∥∥
Lq(Ω×I)

= C ‖a(x, t, y, s)‖Lq(Ω×I×Y×J) .

This means that F remains a bounded linear functional on X also if we replace
the X-norm by the Lq(Ω× I ×Y × J)-norm. This space, which consists of the same

elements as X but is normed by the Lq(Ω× I×Y ×J)-norm instead of the X-norm,
we denote by X1. The Hahn-Banach theorem for linear functionals (see [Alt, p. 97,
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Satz 4.2]) yields the existence of a functional G ∈ (Lq(Ω× I×Y ×J))′, that extends

F from X1 to Lq(Ω× I × Y × J) and satisfies

‖G‖(Lq(Ω×I×Y×J))′ = ‖F‖X′
1
.

By the Riesz representation theorem ([Kuf, p. 79, 2.9.5]), there exists a unique u0 ∈
Lp(Ω× I × Y × J) such that

(G, a)(Lq(Ω×I×Y×J))′,Lq(Ω×I×Y×J) =
∫ T

0

∫

Ω

∫

Y

∫ 1

0
u0(x, t, y, s)a(x, t, y, s) dZ

for all a ∈ Lq(Ω× I × Y × J) and thus

(F, a)X′,X = (F, a)X′
1,X1

=
∫ T

0

∫

Ω

∫

Y

∫ 1

0
u0(x, t, y, s)a(x, t, y, s) dZ

for any a ∈ X . We have proved that, for any bounded sequence {uε} in Lp(Ω× I),

p ∈]1,∞], we can extract a subsequence, also denoted {uε}, such that

lim
ε

∫ T

0

∫

Ω
uε(x, t)a

(
x, t,

x

ε
,

t

εr

)
dxdt =

∫ T

0

∫

Ω

∫

Y

∫ 1

0
u0(x, t, y, s)a(x, t, y, s) dZ

for some u0 ∈ Lp(Ω× I × Y × J) and any a that meets (4) and (5). The theorem is
proved �

������ 1. The careful reader may have noticed that the extended map G in

the proof of Theorem 2.3 is not necessarily unique, unless X is dense in Lq(Ω× I ×
Y ×J). However, the important point is that we can use the same u0 to characterize

the limit for any a ∈ X .

Definition 2.4. We say that a ∈ Lq(Ω× I×Y ×J), q ∈ [1,∞[, is an admissible
test function if it complies with (4) and (5).

������ 2. Important examples of admissible test functions are those in
Lq(Ω× I;C�(Y × J)) and, for Ω bounded, in Lq

�(Y × J ;C(Ω× I)) (see Section 5 in

[All3]). For the sake of simplicity, in the sequel we will assume that Ω is bounded.

������ 3. The corresponding result for traditional two-scale convergence is

obtained if we just remove the dependence of t and s from all the functions involved.

Clearly, the usual kind of two-scale convergence exhibited in (3) is immediately
generalized to the version shown in (6) and, therefore, we formulate the rest of the

results in this section in the standard setting, where only one speed of oscillation
appears. For p = 2, the following slightly different version of Theorem 2.3 holds.
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Theorem 2.5. Let {uε} be a bounded sequence in L2(Ω) with a two-scale limit

u0. Further, assume that {aε} is a sequence in L2(Ω) with a two-scale limit a and

that

(6) lim
ε
‖aε(x)‖L2(Ω) = ‖a(x, y)‖L2(Ω×Y ) .

Then

(7) lim
ε

∫

Ω
uε(x)aε(x) dx =

∫

Ω

∫

Y

u0(x, y)a(x, y) dxdy

and if, in addition,

lim
ε

∥∥∥a
(
x,

x

ε

)∥∥∥
L2(Ω)

= ‖a(x, y)‖L2(Ω×Y ) ,

then

(8) lim
ε

∥∥∥aε(x) − a
(
x,

x

ε

)∥∥∥
L2(Ω)

= 0.

�����. See Theorem 2.4 in [All1] and Theorem 1.8 in [All3]. �

Next we claim that any function in L2(Ω × Y ) will appear as the two-scale limit
of some bounded sequence in L2(Ω).

Proposition 2.6. Let u be any function in L2(Ω × Y ). There then exists a

bounded sequence {uε} in L2(Ω) that two-scale converges to u.

�����. See Lemma 1.13 in [All3]. �

Proposition 2.7. Assume that u ∈ L2(Ω × Y ) is an admissible test function.
Then {u(x, x

ε )} two-scale converges to u.

�����. Proposition 2.6 says that there exists a bounded sequence {uε} in L2(Ω)
that two-scale converges to u. By construction (see [All3] or [HolWel]),

‖uε‖L2(Ω) → ‖u‖L2(Ω×Y )

and hence, by (8) and the Hölder inequality,
∫

Ω

(
uε(x)− u

(
x,

x

ε

))
a
(
x,

x

ε

)
dx �

∥∥∥uε(x) − u
(
x,

x

ε

)∥∥∥
L2(Ω)

∥∥∥a
(
x,

x

ε

)∥∥∥
L2(Ω)

→ 0.

We have proved that, for all admissible a,

lim
ε

∫

Ω
u
(
x,

x

ε

)
a
(
x,

x

ε

)
dx = lim

ε

∫

Ω
uε(x)a

(
x,

x

ε

)
dx =

∫

Ω

∫

Y

u(x, y)a(x, y) dxdy.

The proof is complete. �
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������ 4. In the light of Theorem 2.5, the close relationship is worth noticing

between on the one hand the strong and weak convergences in the usual L2-meaning
and on the other the corresponding notions in the sense of two-scale convergence.
Let {uε} be a bounded sequence in L2(Ω). Then, up to a subsequence and for some

u ∈ L2(Ω),

uε ⇀ u weakly in L2(Ω).

If, in addition,

(9) ‖uε‖L2(Ω) → ‖u‖L2(Ω) ,

then

uε → u strongly in L2(Ω).

We compare this with the corresponding cases of two-scale convergence and find
that, still up to a subsequence,

uε ⇀⇀ u0 in L2(Ω× Y ),

i.e. {uε} passes to u0 in the sense of usual (weak) two-scale convergence.

Under the supplementary assumptions that

(10) ‖uε‖L2(Ω) → ‖u0‖L2(Ω×Y )

and

(11)
∥∥∥u0

(
x,

x

ε

)∥∥∥
L2(Ω)

→ ‖u0‖L2(Ω×Y )

Theorem 2.5 yields that

∥∥∥uε(x)− u0

(
x,

x

ε

)∥∥∥
L2(Ω)

→ 0

or, in other words, {uε} two-scale converges strongly to u0. Clearly, usual two-scale
convergence plays the role of weak convergence and the assumptions (10) and (11)

strengthen the weak (usual) two-scale convergence in a similar way as assumption (9)
turns the weak L2(Ω)-convergence of {uε} into the corresponding strong convergence.

Proposition 2.8. Let {uε} be a bounded sequence in L2(Ω) and let v belong to

L∞� (Y ). Then, up to a subsequence, {uε(x)v(xε )} two-scale converges to u0(x, y)v(y),
where u0 is the two-scale limit to {uε}.
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�����. Obviously, {uε(x)v(xε )} is a bounded sequence of functions in L2(Ω) and

thus possesses a unique two-scale limit w0 ∈ L2(Ω×Y ). Moreover, for e.g. a = a1 ·a2,
a1 ∈ D(Ω), a2 ∈ C∞

� (Y ), a · v is an admissible test function and hence

∫

Ω
uε(x)a1(x)a2

(x

ε

)
v
(x

ε

)
dx →

∫

Ω

∫

Y

u0(x, y)a1(x)a2(y)v(y) dxdy.

This, together with the fact that the class of test functions a1, a2 used here is large

enough to provide uniqueness, means exactly that the two-scale limit w0 coincides
with u0 · v and the proof is complete. �

Proposition 2.9. Assume that {uε} is a sequence in L2(Ω) that two-scale con-
verges to u ∈ L2(Ω× Y ). Then {uε} converges weakly to

∫
Y

u(x, y) dy in L2(Ω).

�����. See Proposition 1.16 in [All3]. �

Proposition 2.10. Assume that {uε} converges strongly to u in L2(Ω). Then
{uε} two-scale converges to u.

�����. Let a be any function in L2(Ω;C�(Y )). By assumption, u ∈ L2(Ω) and
thus u ·a ∈ L1(Ω;C�(Y )). This means (see (5.8) in the proof of Lemma 5.3 in [All3])

that ∫

Ω
u(x)a

(
x,

x

ε

)
dx →

∫

Ω

∫

Y

u(x)a(x, y) dxdy.

Further, by Hölder’s inequality and the fact that a obeys (4), we arrive at

∣∣∣∣
∫

Ω
(uε(x)− u(x))a

(
x,

x

ε

)
dx

∣∣∣∣ � ‖uε − u‖L2(Ω) ·
∥∥∥a

(
x,

x

ε

)∥∥∥
L2(Ω)

→ 0

and the proof is complete. �

������ 5. In [HolWel], it is proved that the results in Theorem 2.5 and Propo-
sitions 2.6–2.10 hold also in Lp(Ω), where p may be different from two.

������ 6. Both Nguetseng and Allaire characterize limits of bounded se-
quences inW 1,2(Ω) and gradients of such sequences. In Chapter 3, we will prove such

results in a more general setting that is particularily well suited for homogenization
procedures for a quite large class of linear and nonlinear parabolic equation.
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3. A compactness result

Below we prove an extension of Theorem 2.3 that is a generalization in a certain
evolution sense of the corresponding compactness results for gradients mentioned in

Remark 6.

Theorem 3.1. Assume that {uε} is a bounded sequence inW 1
p (I;W

1,p
0 (Ω), L

2(Ω))

and that p ∈ [2,∞[.
Then, up to a subsequence,

lim
ε

∫ T

0

∫

Ω
uε(x, t)a

(
x, t,

x

ε
,

t

εr

)
dxdt =

∫ T

0

∫

Ω

∫ 1

0

∫

Y

u(x, t)a(x, t, y, s) dZ

and

lim
ε

∫ T

0

∫

Ω
∂xiu

ε(x, t)ai

(
x, t,

x

ε
,

t

εr

)
dxdt

=
∫ T

0

∫

Ω

∫ 1

0

∫

Y

(∂xiu(x, t) + ∂yiu1(x, t, y, s))ai(x, t, y, s) dZ

for all admissible a : Ω× I×Y × J → RN , where u is the weak Lp(I;W 1,p(Ω))-limit

to {uε} and u1 ∈ Lp(Ω× I;Lp(J ;W 1,p
� (Y )/R)).

The L2-version of the result below is found in Lemma 4 in [Ngu1] (see also Re-
mark 1.9 in Chapter 1 in [Tem]) and is essential for the proof of Theorem 3.1. The

generalization to the Lp-case follows immediately from [Ziem] Theorem 2.1.4.

Lemma 3.2. Let f ∈ [Lp
� (Y )]

N , p � 2, and assume that
∫

Y
f(y) · a(y) dy = 0 for

all a ∈ [C∞
� (Y )]

N with zero divergence. Then there exists a unique u ∈ W 1,p
� (Y )/R

such that ∇u = f .

����� �� 	
����� 3.1. {uε} is bounded in Lp(I;W 1,p(Ω)) and thus
{∂xiu

ε} is bounded in Lp(Ω × I). Consequently, there exists two-scale limits u0

in Lp(Ω× I×Y ×J) and v0 in [Lp(Ω× I ×Y ×J)]N such that, up to a subsequence,

∫ T

0

∫

Ω
uε(x, t)a

(
x, t,

x

ε
,

t

εr

)
dxdt →

∫ T

0

∫

Ω

∫ 1

0

∫

Y

u0(x, t, y, s)a(x, t, y, s) dZ

and

(12)∫ T

0

∫

Ω
∂xiu

ε(x, t)ai

(
x, t,

x

ε
,

t

εr

)
dxdt →

∫ T

0

∫

Ω

∫ 1

0

∫

Y

v0,i(x, t, y, s)ai(x, t, y, s) dZ
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for all admissible a and ai. We have established the existence of the respective two-

scale limits. It remains to force as much regularity as possible on them. By the
boundedness of {uε} in Lp(I;W 1,p(Ω)) and the weak sequential compactness of unit
balls in reflexive Banach spaces it follows that, up to a subsequence,

(13) uε ⇀ u weakly in Lp(I;W 1,p(Ω))

and hence, of course, in Lp(Ω× I). Moreover, in e.g. Lemmas 8.2 and 8.4 in [CoFo]

it is proven that for {uε} a bounded sequence in W 1
p (I;W

1,p
0 (Ω), L

2(Ω))

(14) uε → u strongly in L2(Ω× I)

up to a subsequence. Strong L2-convergence to a certain limit u implies two-scale
convergence to this same limit (see Proposition 2.10) and hence we have proved that

{uε} two-scale converges to its weak L2(I;W 1,2(Ω))-limit u. Further, again by (13),
it is clear that u ∈ Lp(I;W 1,p(Ω)).

Next we characterize v0. For this purpose, it will prove sufficient to use a smaller

class of test functions. Therefore, let

a(x, t, y, s) = a1(x) · a2(t) · a3(y) · a4(s),

where a1 ∈ D(Ω), a2 ∈ D(I), a3 ∈ [C∞
� (Y )]

N , a4 ∈ C∞
� (J), and a3 has zero

divergence. Obviously, a is an admissible test function and so

b(x, t, y, s) = ∂xia1(x)a2(t)a3,i(y)a4(s)

and thus, integrating by parts, once before and once after the passage to the limit,
we obtain

∫ T

0

∫

Ω
∂xiu

ε(x, t)a1(x)a2(t)a3,i
(x

ε

)
a4

( t

εr

)
dxdt

→
∫ T

0

∫

Ω

∫ 1

0

∫

Y

∂xiu(x, t)a1(x)a2(t)a3,i(y)a4(s) dZ.

We have proved that, by (12), for these test functions,

∫ T

0

∫

Ω

∫ 1

0

∫

Y

v0,i(x, t, y, s)a1(x)a2(t)a3,i(y)a4(s) dZ

=
∫ T

0

∫

Ω

∫ 1

0

∫

Y

∂xiu(x, t)a1(x)a2(t)a3,i(y)a4(s) dZ.
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This implies that v0 and ∇u differ only up to a certain term that will vanish during

the above integration process. Formally, this means that for

U1,i(x, t, y, s) = v0,i(x, t, y, s)− ∂xiu(x, t)

we have ∫ T

0

∫

Ω

∫ 1

0

∫

Y

U1,i(x, t, y, s)a1(x)a2(t)a3,i(y)a4(s) dZ = 0

and, consequently, ∫

Y

U1,i(x, t, y, s)a3,i(y) dy = 0

a.e. in Ω× I × J and for all divergence-free a3 ∈ [C∞
� (Y )]

N . Lemma 3.2 now yields
that, for a.e. fixed (x, t, s) ∈ Ω× I × J , there exists u1(x, t, ·, s) ∈ W 1,p

� (Y )/R such

that
∂yiu1(x, t, y, s) = U1,i(x, t, y, s) = v0,i(x, t, y, s)− ∂xiu(x, t).

It remains to prove that u1 provides a measurable function

u1 : Ω× I → Lp(J ;W 1,p
� (Y )/R)

and is bounded with respect to the Lp(Ω×I;Lp(J ;W 1,p
� (Y )/R))-norm. We first prove

measurability. Lusin characterization and Petti’s theorem say that u1 is measurable
iff it is continuous up to small sets (see Remark 7). We know that Lp(J ;Lp(Y )) is

separable and that v0,i and ∂xiu belong to Lp(Ω× I;Lp(J ;Lp(Y )) and hence, for a
compact K with µ(A−K) < δ, v0,i and ∂xiu are continuous on K.

For (xj , tj)→ (x, t) in K, we then have

‖u1(x, t, y, s)− u1(xj , tj , y, s)‖Lp(J;W 1,p
� (Y )/R))

= ‖∇yu1(x, t, y, s)−∇yu1(xj , tj , y, s)‖[Lp(J;Lp(Y ))]N

� ‖∇u(x, t)−∇u(xj , tj)‖[Lp(J;Lp(Y ))]N

+ ‖v0(x, t, y, s)− v0(xj , tj , y, s)‖[Lp(J;Lp(Y ))]N → 0.

We have proved that u1 is continuous on K and the measurability of u1 follows.
Finally, we prove that u1 is bounded in Lp(Ω×I;Lp(J ;W 1,p

� (Y )/R)). This follows

directly by Minkowski’s inequality through

‖u1(x, t, y, s)‖Lp(Ω×I;Lp(J;W 1,p
� (Y )/R)) = ‖∇yu1(x, t, y, s)‖[Lp(Ω×I;Lp(J;Lp(Y )))]N

� ‖∇u(x, t)‖[Lp(Ω×I;Lp(J;Lp(Y )))]N + ‖v0(x, t, y, s)‖[Lp(Ω×I;Lp(J;Lp(Y )))]N < ∞.

We have proved that u1 ∈ Lp(Ω× I;Lp(J ;W 1,p
� (Y )/R). The proof is complete. �
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The corollary below is essential, especially for the case r = 2, in the homogeniza-

tion procedures executed in Section 4.

Corollary 3.3. Assume that {uε} is a bounded sequence in W 1
p (I;W

1,p
0 (Ω),

L2(Ω)) and that p ∈ [2,∞[.
Then

lim
ε

∫ T

0

∫

Ω
(uε(x, t) − u(x, t))(1/ε)b

(
x, t,

x

ε
,

t

εr

)
) dx

=
∫

Ω

∫

Y

u1(x, t, y, s)b(x, t, y, s) dZ

for any b : Ω×I → Y ×J such that b = b1 ·b2 ·c1 ·c2, where b1 ∈ D(Ω), b2 ∈ L2� (Y )/R,

c1 ∈ D(I), and c2 ∈ L2�(J).

�����. For some a ∈ [W 1,2
� (Y )]

N , we achieve any b2 ∈ L2� (Y )/R as the diver-

gence of a (see Lemma 2.4 in Chapter 1 in [Tem]). Theorem 3.1 yields that

∫ T

0

∫

Ω
(∂xiu

ε(x, t)− ∂xiu(x, t))b1(x)ai

(x

ε

)
c1(t)c2

( t

εr

)
dxdt

→
∫ T

0

∫

Ω

∫ 1

0

∫

Y

∂yiu1(x, t, y, s)b1(x)ai(y)c1(t)c2(s) dZ.

Integrating by parts, we find that this means
∫ T

0

∫

Ω
(uε(x, t) − u(x, t))(∂xib1(x)ai(x/ε) + (1/ε)b1(x)∂yiai

(x

ε

)
c1(t)c2

( t

εr

)
dxdt

→
∫ T

0

∫

Ω

∫ 1

0

∫

Y

u1(x, t, y, s)b1(x)∂yiai(y)c1(t)c2(s) dZ.

The boundedness assumptions on {uε} and (14) in the proof of Theorem 3.1 suffices
to conclude that {uε} converges strongly to u in L2(Ω). Hence, by Proposition 2.10
and the Hölder inequality

∫ T

0

∫

Ω
(uε(x, t) − u(x, t))(∂xib1(x))ai

(x

ε

)
c1(t)c2

( t

εr

)
→ 0.

Consequently
∫

Ω
(uε(x, t)− u(x, t))(1/ε)b1(x)∂yiai

(x

ε

)
c1(t)c2

( t

εr

)
dxdt

→
∫

Ω

∫

Y

u1(x, t, y, s)b1(x)∂yiai(y)c1(t)c2(s) dZ

and thus, for any b of the type specified in the theorem, the assertion follows and
the proof is complete. �
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������ 7. Lusin’s theorem, as stated in e.g. [Edw, Corollary 4.8.5, Re-

mark 4.8.6], treats only functions from a measurable set A to R. Below we make the
investigations necessary to justify the use of Lusin characterization also for functions
from A into a separable Banach space Y . We say that f : A → Y is continuous up

to small sets if, for any δ > 0, there exists a compact K with µ(A − K) < δ such
that f is continuous on A−K. The following four statements are equivalent:

1) f : A → Y is measurable,
2) p ◦ f : A(→ Y )→ R is measurable for all p ∈ Y ′,

3) p ◦ f : A → R is continuous up to small sets,
4) f : A → Y is continuous up to small sets.

Clearly, Petti’s theorem means that 1) is equivalent to 2) and 2) is equivalent to
3) by Lusin’s theorem. Moreover, 4) implies 3) because

|p(f(xj)− f(x))| � ‖p‖Y ′ ‖f(xj)− f(x)‖Y → 0

if xj → x in K ⊂ A and f : A → Y is continuous. Finally, in [Alt, A 4.11 pp. 131]
it is proved that 1) implies 4).

������ 8. Two-scale limits for sequences of the type {ε∂xiu
ε}, when bounded

in L2(Ω× I), appear with much less effort as a fairly direct consequence of Theorem

2.2 and repeated integration by parts. See [All2] or [Nand].

4. A homogenization procedure

In this section we apply the results from the preceding sections to perform a

quick and convenient homogenization procedure for (1). However, let us first make a
brief comparison with classical homogenization techniques. Homogenization of linear

parabolic equations may also be carried out using a method attributed to Luc Tartar,
that is usually but not quite adequately, called the energy method.

A more appropriate name for this approach would be the “crosswise test function
method”. Rather heuristic methods, such as asymptotic expansion (see [Bens]), are

utilized to infer suitable homogenized and local equations. The solution to the local
problem is exploited to construct test functions that are introduced in the weak

formulation of the original sequence of equations, and vice versa to prove certain
convergence results.

A striking advantage of two-scale convergence in the light of the above is that the
homogenized and local problems appear directly as strict convergence results and do

not have to be derived by tedious and, from a theoretical point of view, more or less
dubious calculations whose relevance has to be verified afterwards.
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We present an alternative homogenization procedure that is based solely on our

developments of Nguetseng’s fundamental convergence results (Theorem 3.1) and
standard functional analysis. First, we list some well known a priori estimates.

Lemma 4.1. The solutions {uε} of (1) are bounded in L∞(I;L2(Ω)),
W 1
2 (I;W

1,2
0 (Ω), L

2(Ω)), and, consequently, in L2(I;W 1,2
0 (Ω)).

Theorem 4.2. Any sequence {uε} of solutions to (1) converges weakly in
L2(I;W 1,2

0 (Ω)) to a limit u ∈ W 1
2 (I;W

1,2
0 (Ω), L

2(Ω)), the unique solution to the

homogenized problem

∂tu(x, t)− ∂xj (aij∂xiu(x, t)) = f(x, t) in Ω× I,(15)

u(x, 0) = u0(x) in Ω.

For r < 2 we have

(16) ajk =
∫ 1

0

∫

Y

aij(y, s)(∂ik + ∂yiz
k(y, s)) dy ds,

where zk ∈ L2� (J ;W
1,2
� (Y )/R), k = 1, 2, . . . , N is the unique solution to the local

problem

(17) ∂yj (aij(y, s)(δik + ∂yiz
k(y, s))) = 0.

For r = 2, ajk is again computed by (16) but zk is the solution to

(18) ∂sz
k(y, s)− ∂yj (aij(y, s)(δik + ∂yiz

k(y, s))) = 0.

For r > 2, finally,

(19) ajk =
∫

Y

( ∫ 1

0
aij(y, s) ds

)
(δik + ∂yiz

k(y)) dy

and zk solves

(20) ∂yj

(( ∫ 1

0
aij(y, s) ds

)
(δik + ∂yiz

k(y))

)
= 0.

�����. We introduce v ∈ W 1,2
0 (Ω) and c ∈ D(I) in (2), pass to the two-scale

limit, and obtain through Theorem 3.1

(21)
∫ T

0

∫

Ω
−u(x, t)v(x)∂tc(t)

+

[ ∫ 1

0

∫

Y

aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s)) dy ds

]
∂xj v(x)c(t) dxdt

=
∫ T

0

∫

Ω
f(x, t)v(x)c(t) dZ.
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Our approach is to study the limit behaviour of the difference between (2) and (21)

for
v(x) = εr−1v1(x)v2

(x

ε

)
, c(t) = c1(t)c2

( t

εr

)
,

where v1 ∈ D(Ω), v2 ∈ W 1,2
� (Y )/R, c1 ∈ D(I) and c2 ∈ C∞

� (J). We obtain

(22)∫ T

0

∫

Ω
((uε(x, t)− u(x, t))/ε)v1(x)v2

(x

ε

)(
εr(∂tc1(t))c2

( t

εr

)
+ c1(t)∂sc2

( t

εr

))

+

([∫ 1

0

∫

Y

aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s)) dy ds

]

− aij

(x

ε
,

t

εr

)
∂xiu

ε(x, t)

)
εr−2(ε(∂xj v1(x))v2

(x

ε

)

+ v1(x)∂yj v2

(x

ε

)
)c1(t)c2

( t

εr

)
dxdt = 0.

Further, multiplication by ε2−r transforms this equation into a very useful shape.

This version of (22) is exhibited below.
(23)∫ T

0

∫

Ω
((uε(x, t)− u(x, t))/ε)v1(x)v2

(x

ε

)(
ε2(∂tc1(t))c2

( t

εr

)
+ ε2−rc1(t)∂sc2

( t

εr

))

+

([ ∫ 1

0

∫

Y

aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s)) dy ds

]

− aij

(x

ε
,

t

εr

)
∂xiu

ε(x, t)

)(
ε(∂xj v1(x))v2

(x

ε

)

+ v1(x)∂yj v2

(x

ε

))
c1(t)c2

( t

εr

)
dxdt = 0.

Clearly, ∂xj v1(x)v2(y)c1(t)c2(s) and v1(x)∂yj v2(y)c1(t)c2(s) are test functions of

e.g. the type L2� (Y × J ;C(Ω × I)). In view of Theorem 3.1, Corollary 3.3, and
Proposition 2.8, we study the limit processes for the three different cases singled out

in the theorem.
For 0 < r < 2, we pass to the two-scale limit in (23) arriving at

∫ T

0

∫

Ω

∫ 1

0

∫

Y

(aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s))

−
[ ∫ 1

0

∫

Y

aij(y, s)

(
∂xiu(x, t) + ∂yiu1(x, t, y, s) dy ds

])
v1(x)∂yj v2(y)c1(t)c2(s) dZ = 0.

Obviously,

(24)
∫ T

0

∫

Ω

∫ 1

0

∫

Y

[ ∫ 1

0

∫

Y

aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s)) dy ds

]

× v1(x)∂yj v2(y)c1(t)c2(s) dZ = 0
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(the expression within the brackets is independent of y and s) and hence
∫

Y

aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s))∂yj v2(y) dy = 0

for all v2 ∈ W 1,2
� (Y )/R and a.e. in Ω× I × J . Separating variables, we get

(25) u1(x, t, y, s) = ∂xk
u(x, t)zk(y, s),

where z ∈ L2� (I; [W
1,2
� (Y )/R]N) is the unique solution to the decoupled system

(26)
∫

Y

aij(y, s)(δik + ∂yiz
k(y, s))∂yj v2(y) dy = 0,

which holds for all v2 ∈ W 1,2
� (Y )/R. A similar separation of variables turns (21) into

the weak form of (15).

For r = 2, we face a different situation. In this case, Corollary 3.3 is essential. We
pass to the two-scale limit in (22) and arrive at
∫ T

0

∫

Ω

∫ 1

0

∫

Y

u1(x, t, y, s)v1(x)v2(y)c1(t)∂sc2(s)− aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s))

+

[∫ 1

0

∫

Y

aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s) dy ds

]
· v1(x)∂yj v2(y)c1(t)c2(s) dZ = 0

which through (24) and (25) immediately yields the local problem

(27)
∫ 1

0

∫

Y

−zk(y, s)v2(y)∂sc2(s)+aij(y, s)(δik+∂yiz
k(y, s))∂yj v2(y)c2(s) dy ds = 0.

The solution zk to the local problem is utilized in exactly the same way as for
0 < r < 2 to compute the homogenized coefficients ajk by means of (16).

Now, for r > 2, we let ε pass to zero in (22). This means that (22) approaches
∫ T

0

∫

Ω

∫ 1

0

∫

Y

u1(x, t, y, s)v1(x)v2(y)c1(t)∂sc2(s) dZ = 0.

Here the distributional derivative of u1 with respect to s is zero and we conclude

that u1 is in fact independent of s. Finally, we choose c2 as a constant equal to one
in (23), pass to the two-scale limit and obtain from (24) that
∫ T

0

∫

Ω

∫

Y

( ∫ 1

0
aij(y, s) ds

)
(∂xiu(x, t)+∂yiu1(x, t, y))∂yj v2(y)v1(x)c1(t) dxdt dy = 0.

A separation of variables by (25) yields that

(28)
∫

Y

( ∫ 1

0
aij(y, s) ds

)
(δik + ∂yiz

k(y))∂yj v2(y) dy = 0.

The homogenized coefficients are computed by (19) and the proof is complete. �
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5. Correctors

In this section, we benefit from the properties of u1 to prove some stronger con-
vergence results (corrector results), which include also a characterization of strong
convergence for the gradients to sequences of solutions to (1). Clearly, if ∂xiu is

regular enough (most naturally ∂xiu ∈ C(Ω × I), then ∂yiu1 will be admissible
(e.g. ∂yiu1 ∈ L2�(Y ×J ;C(Ω× I)). Depending on whether ∂yiu1 is admissible or not,

we get the two different types of corrector results that are found in Theorems 5.1
and 5.2.

Theorem 5.1. Assume that {uε} is a sequence of solutions to (1) and that {∂xiu
ε}

two-scale converges to ∂xiu + ∂yiu1, where u is the unique solution to (15), u1 is

obtained through (17), (18), (20), and (25), and ∂yiu1 are admissible test functions.

Then

(29) lim
ε
‖uε(x, t)− u(x, t)‖L2(Ω×I) = 0

and

(30) lim
ε

∥∥∥∥∇uε(x, t)−
(
∇u(x, t) +∇yu1

(
x, t,

x

ε
,

t

εr

))∥∥∥∥
[L2(Ω×I)]N

= 0.

If ∂yiu1 are not admissible test functions, the results below still hold.

Theorem 5.2. Assume that {uε} is a sequence of solutions to (1) and that {∂xiu
ε}

two-scale converges to ∂xiu + ∂yiu1, where u is the unique solution to (15) and u1

is obtained through (17), (18), (20) and (25). Moreover, let {sn,i} be a sequence of
elements in C(Ω× I) which converges strongly to ∂xiu in L2(Ω× I).

Then

(31) lim
ε

∥∥∥∥∇uε(x, t) −
(
∇u(x, t) +∇yu1

(
x, t,

x

ε
,

t

εr

))∥∥∥∥
[L1(Ω×I)]N

= 0

and

(32) lim
ε

∥∥∥∥∇uε(x, t)−
(
∇u(x, t) + sn,k(x, t)∇yzk

(x

ε
,

t

εr

))∥∥∥∥
[L2(Ω×I)]N

= an,

where an → 0 for n →∞.
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����� �� 	
����� 5.1. The positive definiteness of aij yields that

(33) C

∥∥∥∥∇uε(x, t)−
(
∇u(x, t) +∇yu1

(
x, t,

x

ε
,

t

εr

))∥∥∥∥
[L2(Ω×I)]N

�
∫ T

0

∫

Ω
aij

(x

ε
,

t

εr

)(
∂xiu

ε(x, t)−
(
∂xiu(x, t) + ∂yiu1

(
x, t,

x

ε
,

t

εr

)))

× ∂xj u
ε(x, t) −

(
∂xj u(x, t) + ∂yj u1

(
x, t,

x

ε
,

t

εr

))
dxdt

holds for some constant C. We now let the operator equation (1) act on uε as a test
function and, for the right-hand side of (33) written in full, we may replace

∫ T

0

∫

Ω
aij(

x

ε
,

t

εr
)∂xiu

ε(x, t)∂xj u
ε(x, t) dxdt

with ∫ T

0

∫

Ω
−∂tu

ε(x, t)uε(x, t) + f(x, t)uε(x, t) dxdt.

We note that, for this rewritten version of (33), Theorem 3.1, Proposition 2.8, and
the admissibility of ∂yiu1 allow us to pass to the limit. We obtain

C lim
ε

∥∥∥∥∇uε(x, t) − (∇u(x, t) +∇yu1(x, t,
x

ε
,

t

εr
))

∥∥∥∥
2

[L2(Ω×I)]N

=
∫ T

0

∫

Ω

∫ 1

0

∫

Y

−∂tu(x, t)u(x, t) + f(x, t)u(x, t)

− aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s)) · (∂xj u(x, t) + ∂yj u1(x, t, y, s)) dZ.

We first observe that

∫ T

0

∫

Ω

∫ 1

0

∫

Y

−∂tu(x, t)u(x, t) + f(x, t)u(x, t)

− aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s))∂xj u(x, t) dZ = 0

means nothing but the homogenized operator equations acting on u as a test function.

For 1 < r < 2 and r > 2, a separation of variables as in (25) yields that

∫ T

0

∫

Ω

∫ 1

0

∫

Y

aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s))∂yj u1(x, t, y, s) dZ = 0

easily reduces to the local problems (26) and (28), respectively.
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For r = 2 we obtain

∫ T

0

∫

Ω

∫ 1

0

∫

Y

aij(y, s)(∂xiu(x, t) + ∂yiu1(x, t, y, s))∂yj u1(x, t, y, s) dZ

= −
∫ T

0

∫

Ω

∫ 1

0

∫

Y

u1(x, t, y, s)∂su1(x, t, y, s) dZ.

Integrating by parts we find that

∫ T

0

∫

Ω

∫ 1

0

∫

Y

u1(x, t, y, s)∂su1(x, t, y, s) dZ

=
∫ T

0

∫

Ω

∫ 1

0

∫

Y

∂s(u1(x, t, y, s))2 − ∂su1(x, t, y, s)u1(x, t, y, s) dZ

and, by the periodicity of u1 with respect to s, we conclude that

∫ T

0

∫

Ω

∫ 1

0

∫

Y

∂s(u1(x, t, y, s))2 dZ = 0.

Consequently,

∫ T

0

∫

Ω

∫ 1

0

∫

Y

u1(x, t, y, s)∂su1(x, t, y, s) dZ

= −
∫ T

0

∫

Ω

∫ 1

0

∫

Y

∂su1(x, t, y, s)u1(x, t, y, s) dZ = 0.

We have proved that

lim
ε

∥∥∥∥∇uε(x, t) −
(
∇u(x, t) +∇yu1

(
x, t,

x

ε
,

t

εr

))∥∥∥∥
[L2(Ω×I)]N

= 0

and the proof is complete. �

������ 9. Note that (25) characterizes the corrector ∂yiu1 explicitly in terms
of the solutions to the local problems (17), (18), and (20) and the homogenized

problem (15). Further, the proof of Theorem 3.1 contains also a proof of strong
convergence for {uε} to u in L2(Ω× I) which will appear independently of whether

∂yiu1 is admissible or not.

����� �� 	
����� 5.2. We first note that the existence of the approximat-
ing sequence {sn} follows immediately from the density of C(Ω × I) in L2(Ω × I).

Obviously, sn,k(x, t)∂yiz
k(y, s) ∈ L2� (Y × J ;C(Ω× I)) and thus they are admissible

test functions. The proof for (32) is then exactly the same as for (30) in Theorem 5.1,
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if we let sn,i go strongly to ∂xiu in L2(Ω× I) after the passage to the limit zero for

ε. We prove (31).

lim
ε

∥∥∥∥∇uε(x, t)−
(
∇u(x, t) +∇yu1

(
x, t,

x

ε
,

t

εr

))∥∥∥∥
[L1(Ω×I)]N

� lim
ε

∥∥∥∥∇uε(x, t)−
(
∇u(x, t) + sn,k(x, t)∇yzk

(x

ε
,

t

εr

))∥∥∥∥
[L1(Ω×I)]N

+ lim
ε

∥∥∥∥sn,k(x, t)∇yzk
(x

ε
,

t

εr

)
−∇yu1

(
x, t,

x

ε
,

t

εr

)∥∥∥∥
[L1(Ω×I)]N

� lim
ε

∥∥∥∥∇uε(x, t)− (∇u(x, t) + sn,k(x, t)∇yzk
(x

ε
,

t

εr

)
)

∥∥∥∥
[L1(Ω×I)]N

+ lim
ε

∥∥∥∥(sn,k(x, t) − ∂xk
u(x, t))∇yzk

(x

ε
,

t

εr

)∥∥∥∥
[L1(Ω×I)]N

� lim
ε

C(

∥∥∥∥∇uε(x, t)− (∇u(x, t) + sn,k(x, t)∇yzk
(x

ε
,

t

εr

)
)

∥∥∥∥
[L2(Ω×I)]N

+ ‖sn(x, t)−∇u(x, t)‖[L2(Ω×I))]N · lim
ε

∥∥∥∥∇yzk
(x

ε
,

t

εr

)∥∥∥∥
[L2(Ω×I)]N

)

= 0 + 0 ·
∥∥∇yzk(y, s)

∥∥
[L2(Ω×I×Y×J)]N

= 0

as a consequence of (32) and the admissibility of ∂yiz
k if we let n →∞. �

The ����� of (31) is complete. �

6. Further results and concluding remarks

First we note that ∂yiu1 may be admissible under the regularity assumptions made

in (1). However, these assumptions absolutely do not guarantee enough regularity
for this to hold. In Theorem 6.1 below we give examples of regularity assumptions

strong enough for this aim.

Theorem 6.1. Assume that Ω ⊂ �
N , N = 1, 2, and 3 is bounded with a C∞

boundary, that f ∈ H2,1(Ω× I) and u0 ∈ W 3,2(Ω). Then, after a possible modifica-

tion on a negligible subset of Ω, ∂yiu1 is an admissible test function. For N = 1, it
suffices to require that f ∈ H1,1(Ω× I) and u0 ∈ W 2,2(Ω).

For the proof of this, we state a number of lemmas.

Lemma 6.2. Assume that f ∈ Hk, k
2 (Ω × I), u0 ∈ W k+1,2(Ω), k > 0 integer

and that Ω is bounded with a C∞ boundary. Then (15) possesses a unique solution
u ∈ Hk+2,k/3(Ω× I).
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�����. The lemma follows directly from [LiMa, Chapter 4, Theorem 5.3] for

g0 = 0, m = 1, and B0 the identity boundary operator on ∂Ω. �

Lemma 6.3. Assume that Ω ⊂ RN is strongly locally Lipschitz (e.g. bounded

and with locally Lipschitz boundary). Then W j+m,p(Ω) is continuously embedded
into Cj(Ω) if mp > N > (m− 1)p.

�����. See [Ada, Theorem 5.4 CI ]. �

Lemma 6.4. Let Ω be bounded with a C∞ boundary and assume that 0 < θ < 1.

Moreover, let s, s0, s1, p, p0, p1, s0 
= s1, 1 < p0, p1 < ∞ be real numbers.

Furthermore, assume that s = (1 − θ)s0 + θs1 and 1/p = (1 − θ)/p0 + θ/p1. Then,

the interpolation space [W s0,p0(Ω), W s1,p1(Ω)]θ coincides with W s,p(Ω).

�����. See [BeLö, Theorem 6.4.5 (7)]. �

The result in the next lemma is found on p. 1111 in [Zei].

Lemma 6.5. Let V ⊂ H ⊂ V ∗ be an evolution triple and assume that u ∈
L2(I;V ) and ∂m

∂mtu ∈ L2(I;H). Then ∂j

∂jtu ∈ C(I ; [V, H ](j+ 12 )/m) for j = 0, 1, . . . ,
m− 1.

����� �� 	
����� 6.1. For k = 2 it follows immediately from Lemma 6.2
that u belongs to H4,

2
3 (Ω× I) ⊂ L2(I;W 4,2(Ω)) and thus a simple reformulation of

the homogenized problems implies that ∂tu lies in L2(I;W 2,2(Ω)).

Further, we note that the embeddings W 4,2(Ω) ⊂ W 2,2(Ω) ⊂ (W 4,2(Ω))∗ are
dense and continuous and thus represent an evolution triple. Hence, by interpola-

tion (see Lemmas 6.4 and 6.5) we find that u belongs to the interpolation space
C(I ; [W 4,2(Ω), W 2,2(Ω)]1/2), which coincides with C(I;W 3,2(Ω)).

For N = 1, 2, and 3 and ∂Ω Lipschitz it follows directly from Lemma 6.3 that
W 3,2(Ω) is continuously embedded in C1(Ω) and hence, changing u on at most a set

of measure zero, u ∈ C(I;C1(Ω)). Clearly, ∂xiu ∈ C(Ω× I).
We have proved that ∂yiu1 ∈ L2� (Y × J ;C(Ω × I)) and thus it is an admissible

test function. For N = 1, it suffices to assume that f ∈ H1,1(Ω × I) and that
u0 ∈ W 2,2(Ω), because, in this case, W 2,2(Ω) is continuously embedded in C1(Ω).

The proof is complete. �

������ 10. Let us remark that the sacrifice necessary to ensure the admissi-

bility of ∂yiu1 is solely to require more regularity of the right-hand side of (1), but
not of the from the point of view of physical relevance more important coefficients

aij . This is exactly the reason why we avoid the second possibility, namely to in-
crease the regularity of aij enough to obtain ∂yiz

k ∈ C�(Y × J), making ∂yiu1 an
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admissible test function of the type L2(Ω×I;C�(Y ×J)). For some texts on function

spaces, interpolation theory and regularity that contain an essential background to
the above discussion we refer to [Ada], [BeLö, Ch 6.4], [Kuf, Ch 5], [Alt, Ch 5], and
[Zei, part IIB, p. 1101–1110 and part IIA, Ch 23].

������ 11. In [BraOts] Brahim-Otsmane et al. apply classical homogeniza-

tion methods to obtain corrector results for linear parabolic equations where aij

oscillates only in the space variable. Further, in [Bens], Bensoussan et al. study

homogenization and correctors for parabolic problems and obtain the three cases
exhibited in Theorem 4.2 by means of asymptotic expansions.
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