[1] D. Arnold, J. Douglas, V. Thomée:
Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comp. 36 (1981), 53–63.
DOI 10.1090/S0025-5718-1981-0595041-4 |
MR 0595041
[3] R. Ewing:
Numerical solution of Sobolev partial differential eqautions. SIAM J. Numer. Anal. 12 (1975), 345–363.
DOI 10.1137/0712028 |
MR 0395265
[4] W. Ford:
Galerkin approximation to nonlinear pseudoparabolic partial differential equation. Aequationes Math. 14 (1976), 271–291.
DOI 10.1007/BF01835978 |
MR 0408270
[6] W. Ford, T. Ting:
Uniform error estimates for difference approximations to nonlinear pseudoparabolic partial differential equations. SIAM J. Numer. Anal. 11 (1974), 155–169.
DOI 10.1137/0711016 |
MR 0423833
[7] Q. Lin: A new observation in FEM. Proc. Syst. Sci. & Syst. Eng. (1991), Great Wall (H.K.) Culture Publish Co., 389–391.
[8] Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid. 217–229.
[12] Y. Lin, V. Thomée, L. Wahlbin:
Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28 (1991), 1047–1070.
DOI 10.1137/0728056 |
MR 1111453
[15] M. Wheeler:
A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723–759.
DOI 10.1137/0710062 |
MR 0351124
[16] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods. Hunan Science Press, 1990.