[2] M. Křížek, P. Neittaanmäki:
On Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Essex, 1989.
MR 1066462
[3] Q. Lin: A new observation in FEM. Proc. Syst. Sci. & Syst. Eng., Great Wall (H.K.), Culture Publish Co., 1991, pp. 389–391.
[4] Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid. 217–229.
[5] Q. Lin, Q. Zhu: The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientific & Technical Publishers, 1994.
[7] Y. Lin, T. Zhang:
The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type. Applications of Mathematics 36 (1991), no. 2, 123–133.
MR 1097696
[8] Y. Lin, V. Thomée, L. Wahlbin:
Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28 (1991), 1047–1070.
DOI 10.1137/0728056 |
MR 1111453
[9] V. Thomée:
Galerkin Finite Element Methods for Parabolic Problems. Lect. Notes in Math., 1054, 1984.
MR 0744045
[10] V. Thomée, J. Xu, N. Zhang:
Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem. SIAM J. Numer. Anal. 26 (1989), 553–573.
DOI 10.1137/0726033 |
MR 0997656
[11] V. Thomée, N. Zhang:
Error estimates for semidiscrete finite element methods for parabolic integrodifferential equations. Math. Comp. 53 (1989), 121–139.
DOI 10.2307/2008352 |
MR 0969493
[12] M. Wheeler:
A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723–759.
DOI 10.1137/0710062 |
MR 0351124
[13] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods. Hunan Science Press, 1990.