[3] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig, 1914.
[4] D. Kurepa:
Partitive sets and ordered chains. Rad. Jug. Akad. Znan. Umjet, Odjel Mat. Fiz. Techn. Nauke 6 (1957), 197–235.
MR 0097328 |
Zbl 0147.26301
[5] V. M. Micheev:
On sets containing the greatest number of pairwise incomparable Boole vectors. Probl. Kib. 2 (1959), 69–71. (Russian)
MR 0123498
[6] J. Novák:
On some ordered continua of power $2^{\aleph _0}$ containing a dense subset of power $\aleph _1$. Czechoslovak Math. J. 1 (1951), 63–79.
MR 0049262
[7] J. Novák:
On some characteristics of an ordered continuum. Czechoslovak Math. J. 2 (1952), 369–386. (Russian)
MR 0062197
[8] V. Novák:
On the pseudodimension of ordered sets. Czechoslovak Math. J. 13 (1963), 587–598.
MR 0180507
[11] M. Novotný: On a certain characteristic of an ordered continuum. Czechoslovak Math. J. 3 (1953), 75–82. (Russian)
[12] M. Novotný:
On representation of partially ordered sets by means of sequences of 0’s and 1’s. Čas. pěst. mat. 78 (1953), 61–64. (Czech)
MR 0079066
[13] M. Novotný:
Bemerkung über die Darstellung teilweise geordneter Mengen. Spisy přír. fak. MU Brno 389 (1955), 451–458.
MR 0082958
[14] J. Schmidt:
Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer geordneten Menge. Arch. Math. 7 (1956), 241–249.
DOI 10.1007/BF01900297 |
MR 0084484
[15] E. Sperner:
Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27 (1928), 554–558.
MR 1544925