[1] Burris, S., Sankappanavar, H. P.:
A Course in Universal Algebra. Springer, Berlin, 1977.
MR 0648287
[3] Chang, C. C.:
A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80.
MR 0122718 |
Zbl 0093.01104
[4] Cignoli, R.: Lattice-ordered abelian groups and completeness of Łukasiewicz and product $t$-norm. Sémin. Structures Alg. Ord., Univ. Paris VII, No. 68, 1999, pp. 14.
[6] Hájek, P.: Basic fuzzy logic and $BL$-algebras. Inst. Comput. Sciences Acad. Sci. Czech Rep., Techn. Report V736 (1997).
[7] Hájek, P.:
Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998.
MR 1900263
[9] Mundici, D.:
$MV$-algebras are categorically equivalent to bounded commutative $BCK$-algebras. Math. Japonica 31 (1986), 889–894.
MR 0870978 |
Zbl 0633.03066
[10] Kovář, T.: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký Univ., 1996.
[11] Rachůnek, J.:
Prime ideals in autometrized algebras. Czechoslovak Math. J. 37 (1987), 65–69.
MR 0875128
[13] Rachůnek, J.:
Spectra of autometrized lattice algebras. Math. Bohem. 123 (1998), 87–94.
MR 1618727
[14] Rachůnek, J.:
$MV$-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441.
MR 1667115
[15] Rachůnek, J.:
Ordered prime spectra of bounded $DRl$-monoids. Math. Bohem (to appear).
MR 1802299
[20] Swamy, K. L. N., Subba Rao, B. V.:
Isometries in dually residuated lattice ordered semigroups. Math. Sem. Notes 8 (1980), 369–380.
MR 0601906
[21] Turunen, E.: Boolean deductive systems of $BL$-algebras. Research Report 61, Lappeenranta Univ. of Technology, Dept. Inf. Techn., 1998.