Previous |  Up |  Next

Article

Keywords:
fuzzy semi $\alpha $-irresolute function; fuzzy product; fuzzy irresolute function; fuzzy almost irresolute function; nowhere dense fuzzy set
Summary:
A new class of functions called fuzzy semi $\alpha $-irresolute functions in fuzzy topological spaces are introduced in this paper. Some characterizations of this class and its properties and the relationship with other classes of functions between fuzzy topological spaces are also obtained.
References:
[1] Azad, K. K: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82 (1981), 14–32. DOI 10.1016/0022-247X(81)90222-5 | MR 0626738 | Zbl 0511.54006
[2] Bin Shahna, A. S.: On fuzzy strong semicontinuity and fuzzy pre-continuity. Fuzzy Sets and Systems 44 (1991), 303–308. DOI 10.1016/0165-0114(91)90013-G | MR 1140864
[3] Chae, G. I., Noiri, T., Lee, D. W.: On na-continuous functions. Kyungpook Math. J. 26 (1986), 73–79. MR 0863699
[4] Chang, C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190. DOI 10.1016/0022-247X(68)90057-7 | MR 0236859 | Zbl 0167.51001
[5] Ganesan Balasubramanian: On fuzzy $\beta $-compact spaces and fuzzy $\beta $-extremally disconnected spaces. Kybernetika 33 (1997), 271–277. MR 1463609
[6] Msahhour, A. S., Ghanim, M. H., Fath Alla, M. A.: On fuzzy non-continuous mappings. Bull. Cal. Math. Soc. 78 (1986), 57–69. MR 0852074
[7] Noiri, T.: Remarks on semi open mappings. Bull. Calcutta Math. Soc. 65 (1973), 197–201. MR 0400149 | Zbl 0319.54012
[8] Yusuf Beceren: On semi $\alpha $-irresolute functions. J. Indian Acad. Math. 22 (2000), 353–362. MR 1830892
[9] Zadeh, L. A.: Fuzzy sets. Information and Control 8 (1965), 338–353. DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo