[1] E. Acerbi, G. Mingione:
Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001), 121–140.
DOI 10.1007/s002050100117 |
MR 1814973
[2] D. R. Adams, L. I. Hedberg:
Function Spaces and Potential Theory. Springer, Berlin, 1996.
MR 1411441
[3] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer:
The maximal operator on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. 28 (2003), 223–238.
MR 1976842
[4] L. Diening:
Maximal operator on generalized Lebesgue spaces ${L}^{p(\cdot )}$. Math. Inequal. Appl. 7 (2004), 245–254.
MR 2057643
[5] L. Diening, M. Růžička:
Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics. J. Reine Ang. Math. 563 (2003), 197–220.
MR 2009242
[7] M. Eleutera:
Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 7-B (2004), 129–157.
MR 2044264
[8] X. Fan, D. Zhao:
On the spaces ${L}^{p(x)}(\Omega )$ and ${W}^{m,p(x)}(\Omega )$. J. Math. Anal. Appl. 263 (2001), 424–446.
MR 1866056
[9] P. Harjulehto, P. Hästö:
Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn. Math. 29 (2004), 295–306.
MR 2097234
[10] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen:
Sobolev capacity on the space $W^{1,p(\cdot )}({\mathbb{R}^n})$. J. Funct. Spaces Appl. 1 (2003), 17–33.
MR 2011498
[11] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen:
The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal. 25 (2006), 205–222.
DOI 10.1007/s11118-006-9023-3 |
MR 2255345
[12] P. Hästö:
On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoamericana 23 (2007), 215–237.
MR 2351132 |
Zbl 1144.46031
[13] P. Hästö:
Counter examples of regularity in variable exponent Sobolev spaces. The $p$-Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), 133–143, Contemp. Math. 367, Amer. Math. Soc., Providence, RI, 2005.
MR 2126704 |
Zbl 1084.46025
[14] T. Kilpeläinen: A remark on the uniqueness of quasicontinuous functions. Ann. Acad. Sci. Fenn. Math. 23 (1998), 261–262.
[16] V. Kokilasvili, S. Samko:
Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Rev. Mat. Iberoamericana 20 (2004), 493–515.
MR 2073129
[17] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czech. Math. J. 41 (1991), 592–618.
[20] J. Musielak:
Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer, Berlin, 1983.
MR 0724434 |
Zbl 0557.46020
[21] A. Nekvinda:
Hardy-Littlewood maximal operator on $L^{p(x)}({\mathbb{R}^n})$. Math. Inequal. Appl. 7 (2004), 255–266.
MR 2057644
[24] M. Růžička:
Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748, Springer, Berlin, 2000.
MR 1810360
[26] S. Samko:
Denseness of $C^\infty _0({{\mathbb{R}^n}})$ in the generalized Sobolev spaces $W^{m,p(x)}({{\mathbb{R}^n}})$. Direct and inverse problems of mathematical physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 333–342.
MR 1766309
[27] I. Sharapudinov:
On the topology of the space $L^{p(t)}([0;1])$. Matem. Zametki 26 (1979), 613–632.
MR 0552723